Mapping	Uses
f(z) = z + b	Translate by b
f(z) = Rz, R > 0	Scale by a factor of R
$f(z) = Rz, R > 0$ $f(z) = e^{i\theta}z, \theta \text{ real}$	Clockwise rotation by angle θ
$f(z) = z^a$	Maps the infinite sector $\{z: 0 < \arg(z) < \alpha\}$ to the infinite sector $\{z: 0 < \arg(z) < a\alpha\}$
$f(z) = e^z$	Maps the infinite strip $\{z\colon 0<\mathrm{Im}(z)<\pi\}$ to the upper half plane
The Cayley transform: $f(z) = \frac{z-i}{z+i}$	Maps the upper half plane to the unit disk

Mapping

Fractional Linear transforms: $f(z) = \frac{az+b}{cz+d}$ Example with lunar domain:

Uses

- Maps circles&lines to circles&lines
- Maps lunar domains to sectors
- Bijective on $\mathbb{C} \cup \{\infty\}$
- ullet uniquely determined by 3 points: the LFT

$$f(z) = \frac{z - z_0}{z - z_2} \frac{z_1 - z_2}{z_1 - z_0}$$

Maps $z_0 \to 0$, $z_1 \to 1$, $z_2 \to \infty$

• Mnemonic for inverse and multiplication from 2×2 matrices: mapping the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ to the LFT (az+b)/(cz+d) is a group homomorphism with the set of 2×2 invertible matrices

f(z) = z + 1/z $f(z) = \lambda \frac{z-a}{1-\overline{a}z}, \quad |a| < 1, \quad |\lambda| = 1$

Maps unit semicircle in upper half plane to the lower half plane

Every conformal self-map of the unit disk is of this form