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ABSTRACT

Experiments demonstrate that in a variety of machine learning models, small but carefully
chosen perturbations to data at test time can significantly increase the classification error. As
a result, robustness to adversarial attacks is an increasingly important criterion in security-
critical applications. To improve robustness, one would hope to minimize the classification
error under an attack, known as the adversarial classification risk. The literature proposes a
plethora of tools for improving the robustness of machine learning models, but many of these
methods are poorly understood. One of the most popular defenses is adversarial training, in
which one aims to minimize an adversarial surrogate risk that computes the worst-case loss
over some allowed set of perturbations. The theory of risks in the non-adversarial setting is
well understood, and includes results such as formulas for minimizers and a characterization
of their statistical consistency. We extend some of these results to the adversarial setting.

Lastly our results provide an explanation for the phenomenon of transfer attacks.
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1 INTRODUCTION

Neural nets are state-of-the-art models for a variety of classification tasks. However, these
models exhibit a concerning phenomenon— imperceptible perturbations to data at test-
time can derail their accuracy [14, 58]. Such attacks are a concern in security sensitive
applications such as medical imaging [47], facial recognition [72], and identifying traffic signs
in self-driving cars [37]. The error rate of a classifier under an adversarial attack is referred
to as the adversarial classification risk. One of the most popular defense algorithms is
adversarial training which performs gradient descent on an adversarial surrogate risk that
averages the value of some loss function over the worst possible attack at each point. The
theory of such risks in the non-adversarial setting is well understood [8, 38, 57], and this
thesis extends some of these results to the adversarial setting.

A better understanding of the theoretical underpinnings of adversarial learning could mo-
tivate new directions in algorithm development and explain empirical observations. Specifi-
cally, the results proved in this thesis explain the empirical phenomenon of transfer attacks,
describe the structure of minimizers to adversarial risks, and characterize the statistical con-
sistency of adversarial surrogate risks. An overview of each of these results is provided in
Sections 1.2, 1.3, and 1.4.

Chapter 2 of this thesis was published in JMLR [25] while chapter 4 was published in

Neurlps [26].



1.1 NOTATION AND BACKGROUND

This section describes prior work on risks in the standard classification setting. We consider
the problem of binary classification on R? with labels {—1,+1}. The measures Py, Py,
respectively, describe the probability of data with labels —1, 4+1 occurring in a region of R
Data with label —1 is distributed according to the finite measure Py and data with label +1
is distributed according to the finite measure Py. The classification risk of a set A is then

the proportion of errors if the set A is labeled +1 and the set A® is labeled —1:

R(A) = / 1acdP; + / 1.4dP,

Re-writing this quantity in terms of P = Py +P; and the conditional probability of label +1,

n = dP;/dP, assists in finding the infimum of this risk:
RA) = [ ntae + (1= m)1ad = [ O, 1a()dP(x)
with the conditional risk C': [0,1] x {0,1} — [0,1] as
C(n,b) = (1 =n)b+n(1—0b).

This function represents the classification error when the conditional probability of class
+1 is the constant 7. Consequently, minimizing R is equivalent to minimizing C(n(x),-)

pointwise. As a result, the sets

{n(x)>1/2} and {n(x) >1/2} (1.1)

are both Bayes classifiers. The Bayes classifier is unique if P(n = 1/2) = 0, or alter-



natively, amongst all Bayes classifiers, either the value of Py(A) is unique or the value of
P, (A%) is unique.

However, minimizing the empirical classification risk is computationally difficult and
consequently machine learning algorithms typically minimize a different quantity called a

surrogate risk. We consider the margin-based surrogate,

Ro(f) = / o(f)dP, + / o(—f)dPy.

The function f is then threshholded at 0 to obtain a classifier; we define the classification
error of f as R(f) = R({f > 0}). The loss function ¢ is non-increasing, so that the quantity
¢(yf(x)) can be interpreted as a confidence level, with a high value of y f(x) implying high
confidence.

Again, one can compute minimizers to Ry by writing this risk in terms of the quantities

P and n:
Ry(f) = / n6(f) + (1 — m)p(—f)dP = / Cyn(x), £ ())dP(x).

with the conditional risk as the function

Co(n, @) = no(a) + (1 = n)o(-a).

Again, the conditional risk is the surrogate risk when the conditional probability of class +1 is
the constant 7. Thus minimizing the integrand Cy(n(x), -) pointwise will produce a minimizer
of R4. However, minimizers may not exist on R: consider for instance a distribution for

(67

which 7(x) = 1 and ¢ = e~ is the exponential loss, so that Cy(n(x),a) = e~*. However,

minimizers will exist over the extended real numbers R:

Lemma. There is a non-decreasing function oy : [0, 1] — R that maps each n to the smallest

minimizer of Cy(n,-).



Consequently, the function

ag(n(x)) (1.2)

is a minimizer of Ry. The minimal value of Ry(f) is then [ Cj(n)dP with

Cg(n) = inf C4(n, ). (1.3)

However, minimizing the surrogate R, may not minimize the classification risk R. If
every minimizing sequence of Ry is also a minimizing sequence of R, then the loss ¢ is
consistent. The consistency of surrogate risks is a well studied problem. In particular, [8]

show
Theorem. A convez loss ¢ is consistent iff it is differentiable at 0 and ¢'(0) < 0.

This thesis extends these results to adversarial risks. In the adversarial setting, a point
is misclassified if a malicious adversary can perturb the point into the opposite class. The
adversary’s possible attacks are modeled by an € ball in some norm || - ||. Thus, a point
x € A is missclassified when there is some h € B.(0) for which x + h € A, or in other

words, Sup <, 1 4(x) = 1. The operation of computing a supremum over a closed e-ball

is denoted by

Se(9)(x) = sup g(x).

x—x||<e
Thus, a point x in A is misclassified iff S¢(14)(x) = 1 while a point in A® is misclassified iff
Se(14c)(x) = 1. The adversarial classification risk is the proportion of errors when the set

A is labeled +1 and the set A® is labeled —1:

RE(A) = /Se(lAc)d]PlJr/SE(lA)dIP’O.

Just as in the setting of standard learning, minimizing an empirical version of the adver-
sarial classification risk is computationally intractable. Instead, one typically minimizes the
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surrogate

R(f) = / S.(¢ 0 f)dB, + / Su(¢ 0 — )P,

Notice that in order to define these adversarial risks, one must show that S.(g) is measurable
when ¢ is measurable. This topic is addressed in Chapter 2. A loss is adversarially consistent
if every minimizing sequence of Rj is also a minimizing sequence of R*.

This thesis will study the form of minimizers to the adversarial risks R°, Rj and analyze

the adversarial consistency of surrogate losses.

1.2 TRANSFER ATTACKS

Prior experimental work shows that adversarial examples tend to transfer between deep
networks trained for the same task— in other words, if both f; and f5 are trained for the
same classification task, then an adversarial example that fools f; will frequently fool f.
Such attacks are referred to as transfer attacks, and they provide a method for attacking a
machine learning model without access to the model parameters. These methods are referred
to as black box attacks, in contrast to a white box attacks in which the adversary has full
access to the model. Transfer attacks have a lower success rate than white box attacks. For
instance, [18] train a neural net on handwritten 8 and 9 digits. In their experiments on neural
nets with adversarial perturbations of size at most 1 in the {5 norm, transfer attacks have
a success rate of 10% — 20% while their white box attack succeeds 20% — 30% of the time
(see Figure 7). Furthermore, they show that the phenomenon of transfer attacks extends
to other models in addition to neural nets such as random forests, logistic regression, and
kernel SVMs.

Our results provide an explanation of transfer attacks in terms of complimentary slackness
conditions. The minimax theorem above models an attack as a measure of distance at most

¢ from the original data distribution in the Wasserstein oo-metric. Informally, a measure is



within € of Q if one can obtain the measure Q' by moving each point in R? by at most € under
the measure Q. Consequently, the Wasserstein-oo metric is well-suited for modeling a norm-
bounded adversary. This metric, also denoted W, is formally defined in Chapters 2, 3, 4,
and 5. Let BX(Q) = {Q' : W(Q,Q') < ¢} denote the co-Wasserstein ball of measures

around Q. Chapter 2 relates the risk Rj to a dual quantity.

Theorem. Let Py, Py be finite Borel measures and let C} be the function defined by (1.3).
Define

D * d]P)/I
Ry(Py,IP) = /C¢ <m) d(P} + )

Then
inf R(f)= sup Ry(P},P)) (14)
j Borel PLeB (Po)
R-valued Pl eB(P1)

Furthermore, both the infimum is attained by a function f* and the supremum is attained by

measures P, P].

Earlier work [52] proved a similar minimax theorem for R that replaced C} in the
definition of Ry with C*. This theorem directly leads to complimentary slackness conditions

that characterize the minimizers of R; and the maximizers of R;,.

Theorem. The function f* is a minimizer of R, and Pg, PT mazimize Ry over B*(Py) and

1)
/S€(¢of*)d1@1 - /¢of*dP; and /Se(qbo—f*)dIP’o = /¢o_dePg;

2) Let P* = P5 + Py and n* = dP}/dP*. Then

7 (x)o(f* (%) + (1 =" (x)o(=f"(x) = C5(n"(x))  P-a.e.



Item 1) states that the measures P§, P} must be optimal adversarial attacks against f*
while item 2) states that f* must minimize the conditional risk C}(n*(x),-) of optimal ad-
versarial attacks P*-a.e. These conditions apply to any minimizer of Ry and any maximizers
of Ry. Thus an optimal adversarial attack must preform equally well against any two mini-
mizers of RG! The fact that transfer attacks have a significantly lower success rate that white
box attacks suggests that either the state-of-the-art attacks or state-of-the-art defenses are
far from optimal.

Minimizers of risks in machine learning are typically found via some optimization al-
gorithm, and these procedures can only achieve approximate optimally. Do approximate
minimizers and maximizers exhibit the effect of transfer attacks? Below, we answer this
question in the affirmative: specifically, if f is an approximate minimizer of Ry and Py,Py
are an approximate maximizer of the dual problem Ry, then [ ¢o fdP1+ [ po—fdPy ~ RS .,
where I, is the optimal value of the optimization problem. Assume that Rg(f) < Rj, +0
and R(P},P)) > RS, — ¢ for some § > 0. Then moving each point under Q by the worst-
case amount in an e-ball will results in the function Sc(g), and consequently [ S.(¢)dQ >
[ Sc(g)dQ’ for any Q' € B=(Q) (see Chapter 2 for a formal statement and proof). Similarly,
the definition of the function C} in (1.2) implies that C}(n*) < Cy(n*, f) for any function f.

Therefore,

Ry 432 Ry(f) 2 [oofai+ [oo-fa;

= [ cotwnyw > [ s = Ro® B > Ry~

where P' = P, + P} and ' = dP}/dP’. Subtracting R, , from both sides of this inequality

‘(/¢ofdpg+/¢o—fdpg) ~ R,

Therefore, as any almost-optimal attack against any almost-optimal minimizer of R will

shows that

<9
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achieve almost the same risk, one would expect to find transfer attacks even for approximate

optimizers found by machine learning models.

1.3 THE STRUCTURE OF MINIMIZERS TO R AND R;

Chapters 2 and 5 extend Equations 1.1 and 1.2 to the adversarial setting. Specifically,
Chapter 2 proves that there is a function 7 : R? — [0,1] that reflects the conditional
probability of class +1 under an optimal adversarial attack, and specifically connects this
function to the quantity dPj/d(IPf 4 dP§) for some optimal ‘attack measures’ P§ and Pf. One
can show that minimizers to R and Rj can be constructed just like those in Equations 1.1

and 1.2.

Theorem. For every distribution Py, Py, there is a function 1) : R — [0, 1] for which
I) The function ay(f)(x)) minimizes Rg for every ¢, where ay is as defined in Section 1.1
II) The sets {f > 1/2} and {n > 1/2} minimize R

The sets {fp > 1/2} and {f > 1/2} are ‘minimal’ and ‘maximal’ adversarial Bayes

classifiers in the sense that
Se(l{ﬁ21/2}c) < Se(]-AC) < Se(l{ﬁ>1/2}c) IP’l—a.e.
and

Sﬁ(l{ﬁzl/Q}) < S(1a) < Se(]-{ﬁ21/2}) Po-a.e.

for any other adversarial Bayes classifier A. Chapter 3 also defines uniqueness for the
adversarial Bayes classifier by constructing an equivalence relation on such sets. Two
adversarial Bayes classifiers A; and Ay are equivalent up to degeneracy if for any set A with

8



AN Ay C AC AU A is also an adversarial Bayes classifier. When P is absolutely
continuous with respect to Lebesgue measure, equivalence up to degeneracy defines an
equivalence relation. The adversarial Bayes classifier is unique up to degeneracy if there is a
single equivalence class. There are a few other useful characterizations of uniqueness up to

degeneracy.

Informal Theorem. Assume that Py and Py are absolutely continuous with respect to

Lebesgue measure. Then the following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy

B) Amongst all adversarial Bayes classifiers A, either the value of Py(A) is unique or the

value of Py((A9)) is unique

C) There are measures representing ‘optimal adversarial attacks’ P§, Py for which P*(n* =
1/2) =0, where P* = P§ + P} and n* = dP}/dP*

Again, the measures of ‘optimal adversarial attacks’ IPj, P} are defined using the
Wasserstein-oco distance. Item C) generalizes the criterion P(n = 1/2) = 0 for Bayes
classifiers. Similarly, Item B) generalizes the criterion that amongst all Bayes classifiers,
either the value of Po(A) is unique or the value of P;(A®) is unique.
Furthermore, Chapter 3 provides the tools for computing a representative of each
equivalence class of adversarial Bayes classifiers under equivalence up to degeneracy. An
example from Chapter 3 shows that uniqueness up to degeneracy can fail for all € > 0 even
when the Bayes classifier is unique. However, the densities of this example distribution

were discontinuous while the other examples in this section were better behaved.

Conjecture. If the densities of Py and Py are sufficiently smooth with non-zero derivatives
on the boundary of the Bayes classifier, then the adversarial Bayes classifier is unique up to

degeneracy.

Proving or refuting this conjecture remains an open problem.

9



1.4 THE CONSISTENCY OF ADVERSARIAL SURROGATE
RISKS

Lastly, the results above provide the tools for analyzing the statistical consistency of
adversarial surrogate risks. Prior work [42] provides an example which proves that no
convex loss is adversarially consistent: Let Py, P; be uniform distributions of equal mass

the ball B,/2(0): then every point in the support can be reached from every other point by

a perturbation of size at most ¢ and thus if 14 is non-constant on B,(0) then R (A) = 1.

On the other hand, the constant classifiers R, () each achieve the risk 1/2, and therefore
must be optimal. Next, assume that our loss function satisfies Cj(1/2) = ¢(0). This

property is satisfied by ever convex ¢ because a convex function must satisfy

Cs(1/2,a) = $¢() + 3¢0(—) > ¢(0). Consider the constant function f = 0. Then

R5(f) = ¢(0), which also equals the minimum standard risk for this problem Ry .. The

optimal standard risk is always a lower bound on the optimal adversarial risk and as a

result f =0 is a minimizer of Rj.

Consider the sequence of functions

3=

ifx=0
fn:
1

- otherwise

Then R(f,) = ¢(—1/n) which approaches ¢(0), while R°(f,) = 1. Thus f, is a minimizing
sequence of R that is not a minimizing sequence of R (see Chapter 4 for a rigorous
exposition of this example.)

The example above demonstrates that the obstacle to adversarial consistency for convex
losses is the discontinuity of the indicator functions 1,<g, 140 at zero.

We propose two methods for circumventing this difficulty: first, one can use a loss function

10



for which minimizers to Cy(n, -) are bounded away from zero for all 7. Losses with

C3(1/2) < ¢(0) satisty this requirement.

Lemma. Let ¢ be a loss with C}(1/2) < ¢(0). Then there exists some . > 0 for which

every minimizer o of Cy(n),-) must satisfy |a| > .
Losses satisfying this requirement are in fact adversarially consistent:
Theorem. Any loss with C(1/2) < ¢(0) is both consistent and adversarially consistent.

However, if a loss is consistent, every minimizer of Cy(n, -) must satisfy |a| > 0 so long as
n # 1/2. Thus, another method of circumventing the discontinuity at zero is considering
distributions for which the conditional probability of 1/2 is measure zero, according to an
appropriate measure. The appropriate measure in this case is the measure of optimal
adversarial attacks P, P} discussed in the prior two sections. However, the condition
P*(n* = 1/2) = 0 for P* = P§ + P}, n* = dP;/dP* is equivalent to the uniqueness of the
adversarial Bayes classifier under reasonable conditions. Consequently, assuming that the
adversarial Bayes classifier is unique up to degeneracy will also avoid the discontinuity at

Zero.

Informal Theorem. Let ¢ be a consistent loss with C(1/2) = ¢(0). Then ¢ is consistent

for the distribution Py, Py iff the adversarial Bayes classifier is unique up to degeneracy.

11



2 A MINIMAX THEOREM FOR

ADVERSARIAL SURROGATE RISKS

2.1 INTRODUCTION

Neural networks are state-of-the-art methods for a variety of machine learning tasks including
image classification and speech recognition. However, a concerning problem with these
models is their susceptibility to adversarial attacks: small perturbations to inputs can cause
incorrect classification by the network [14, 58]. This issue has security implications; for
instance, Gu, Dolan-Gavitt, and Garg [31] show that a yellow sticker can cause a neural net
to misclassify a stop sign. Furthermore, one can find adversarial examples that generalize
to other neural nets; these sort of attacks are called transfer attacks. In other words, an
adversarial example generated for one neural net will sometimes be an adversarial example
for a different neural net trained for the same classification problem [18, 35, 46, 54, 60].
This phenomenon shows that access to a specific neural net is not necessary for generating
adversarial examples. One method for defending against such adversarial perturbations
is adversarial training, in which a neural net is trained on adversarially perturbed data
points [35, 39, 67]. However, adversarial training is not well understood from a theoretical
perspective.

From a theoretical standpoint, the most fundamental question is whether it is possible

12



to design models which are robust to such attacks, and what the properties of such robust
models might be. In contrast to the classical, non-adversarial setting, much is still unknown
about the basic properties of optimal robust models. In the context of binary classification,
several prior works study properties of the adversarial classification risk—the expected num-
ber of classification errors under adversarial perturbations. Recently, Awasthi, Frank, and
Mohri [2], Bungert, Trillos, and Murray [16], and Pydi and Jog [52] all showed existence of a
minimizer to the adversarial classification risk under suitable assumptions, and characterized
some of its properties. A crucial observation, emphasized by Pydi and Jog [52], is that mini-
mizing the adversarial classification risk is equivalent to a dual robust classification problem
involving uncertainty sets with respect to the oo-Wasserstein metric. This observation gives
rise to a game-theoretic interpretation of robustness, which takes the form of a zero-sum
game between a classifier and an adversary who is allowed to perturb the data by a certain
amount. As noted by Pydi and Jog [52], this interpretation has implications for algorithm
design by suggesting that robust classifiers can be constructed by jointly optimizing over
classification rules and adversarial perturbations.

This recent progress on adversarial binary classification lays the groundwork for a the-
oretical understanding of adversarial robustness, but it is limited insofar as it focuses only
on minimizers of the adversarial classification risk. In practice, minimizing the empirical ad-
versarial classification risk is computationally intractable; as a consequence; the adversarial
training procedure typically minimizes an objective called a surrogate risk, which is chosen
to be easier to optimize. In the non-adversarial setting, the properties of surrogate risks are
well known [see, e.g. 8], but in the adversarial scenario, existing results for the adversar-
ial classification risk fail to carry over to surrogate risks. In particular, the existence and
minimax results described above are not known to hold. We close this gap by developing
an analogous theory for adversarial surrogate risks. Our main theorems (Theorems 7-9)

establish that strong duality holds for the adversarial surrogate risk minimization problem,
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that solutions to the primal and dual problems exist, and that these optimizers satisfy a
complementary slackness condition.

These results suggest explanations for empirical observations, such as the existence of
transfer attacks. Specifically, our analysis suggests that adversarial examples are a property
of the data distribution rather than a specific model. In fact, the complementary slackness
theorem presented in this paper states that certain attacks are the strongest possible ad-
versary against any minimizer of the adversarial surrogate risk, which might explain why
adversarial examples tend to transfer between trained neural nets. Furthermore, our the-
orems suggest that a training algorithm should optimize over neural nets and adversarial
perturbations simultaneously. Adversarial training, the current state of the art method for
finding adversarially robust networks, does not follow this procedure. The adversarial train-
ing algorithm tracks an estimate of the optimal function f. To update f, the algorithm first
finds optimal adversarial examples at the current estimate f , and then performs a gradient
descent step. See the papers [30, 35, 39] for more details on adversarial training. Finding
these adversarial examples is a computationally intensive procedure. On the other hand,
algorithms for optimizing minimax problems in the finite dimensional setting alternate be-
tween primal and dual steps [44]. This observation suggests that designing an algorithm that
optimizes over model parameters and adversarial perturbations simultaneously is a promis-
ing research direction. Domingo-Enrich et al. [20], Trillos and Trillos [61], and Wang and
Chizat [66] adopt this approach, and one can view the minimax results of this paper as a
mathematical justification for the use of surrogate losses in such algorithms.

Lastly, our theorems are an important first step in understating statistical properties of
surrogate losses. Recall that one minimizes a surrogate risk because minimizing the original
risk is computationally intractable. If a sequence of functions which minimizes the surrogate
risk also minimizes the classification risk, then that surrogate is referred to as a consistent

risk. Similarly, if a sequence of functions which minimizes the adversarial surrogate risk
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also minimizes the adversarial classification risk, then that surrogate is referred to as an
adversarially consistent risk. Much prior work studies the consistency of surrogate risks [8,
38, 43, 49, 57, 75]. Alarmingly, [42] show that a family of surrogates used in applications
is not adversarially consistent. In follow-up work, we show that our results can be used
to characterize adversarially consistent supremum-based risks for binary classification [26],

strengthening results on calibration in the adversarial setting [4, 6, 42].

2.2 RELATED WORKS

This paper extends prior work on the adversarial Bayes classifier. Pydi and Jog [52] first
proved multiple minimax theorems for the adversarial classification risk using optimal trans-
port and Choquet capacities, showing an intimate connection between adversarial learning
and optimal transport. Later, follow-up work used optimal transport minimax reformula-
tions of the adversarial learning problem to derive new algorithms for adversarial learning.
Trillos, Jacobs, and Kim [63] reformulate adversarial learning in terms of a multi-marginal
optimal transport problem and then apply existing techniques from optimal transport to
find a new algorithm. Domingo-Enrich et al. [20], Trillos and Trillos [61], and Wang and
Chizat [66] propose ascent-descent algorithms based on optimal transport and use mean-
field dynamics to analyze convergence. These approaches leverage the minimax view of the
adversarial training problem to optimize over model parameters and optimal attacks simul-
taneously. Gao, Chen, and Kleywegt [27] use an optimal transport reformulation to find
regularizers that encourage robustness. Wong, Schmidt, and Kolter [69] and Wu, Wang, and
Yu [70] use Wasserstein metrics to formulate adversarial attacks on neural networks.
Further work analyzes properties of the adversarial Bayes classifier. Awasthi, Frank, and
Mohri [2], Bhagoji, Cullina, and Mittal [11], and Bungert, Trillos, and Murray [16] all prove

the existence of the adversarial Bayes classifier, using different techniques. Yang et al. [73]
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studied the adversarial Bayes classifier in the context of non-parametric methods. Pydi and
Jog [50] and Bhagoji, Cullina, and Mittal [11] further introduced methods from optimal
transport to study adversarial learning. Lastly, [64] give necessary and sufficient conditions
describing the boundary of the adversarial Bayes classifier. Simultaneous work [36] also
proves the existence of minimizers to adversarial surrogate risks using prior results on the
adversarial Bayes classifier.

The adversarial training algorithm is also well studied from an empirical perspective.
Demontis et al. [18] discussed an explanation of transfer attacks on neural nets trained using
standard methods, but did not extend their analysis to the adversarial training setting. [35,
39, 67] study the adversarial training algorithm and improving the runtime. Two particularly
popular attacks used in adversarial training are the FGSM attack [30] and the PGD attack

[39]. More recent popular variants of this algorithm include [34, 56, 68, 71].

2.3 BACKGROUND AND NOTATION

2.3.1 ADVERSARIAL CLASSIFICATION

This paper studies binary classification on R? with two classes encoded as —1 and +1. Data
is distributed according to a distribution D on R? x {—1,+1}. We denote the marginals
according to the class labels as Py(S) = D(Sx{—1}) and P;(S) = D(S x{+1}). Throughout
the paper, we assume Pg(R?) and P, (R?) are finite but not necessarily that Po(R?)+P; (R?) =
1.

To classify points in R¢, algorithms typically learn a real-valued function f and then
classify points x according to the sign of f (arbitrarily assigning the sign of 0 to be —1).

The classification error, also known as the classification risk, of a function f is

R(f) :/1f(X)S0d]P1+/1f(x)>0dP0- (2.1)
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Notice that finding minimizers to R is straightforward: define the measure P = Py, + P; and

let n = dPy/dP. Then the risk R can be re-written as

RUP) = [ 0698020 + (1= 000)L000P.

Hence a minimizer of R must minimize the function C(n(x), &) = n(x)1a<o + (1 —7(x))1as0

at each x P-a.e. The optimal Bayes risk is then

wt R(f) = [ C*(n)ap

where C*(n) = inf, C(n,a) = min(n,1 —n).

This paper analyzes the evasion attack, in which an adversary knows both the function
f and the true label of the data point, and can perturb each input before it is evaluated by
the function f. To constrain the adversary, we assume that perturbations are bounded by
€ in a norm || - [|. Thus a point x with label +1 is misclassified if there is a perturbation h
with ||h|| < € for which f(x+h) < 0 and a point x with label —1 is misclassified if there is a
perturbation h with ||h|| < e for which f(x+h) > 0. Therefore, the adversarial classification
risk is

R(f) :/SUP 14(x4n)<odlPy +/|sup 1 ¢(x+n)>0dPy (2.2)

hj|<e h|<e
which is the expected proportion of errors subject to the adversarial evasion attack. The
expression supjy <. lr(x+hy<o €valuates to 1 at a point x iff x can be moved into the set
[f < 0] by a perturbation of size at most e. Equivalently, this set is the Minkowski sum &

of [f <0] and B.(0). For any set A, let A° denote

A° = {x: 3h with |[h|| <cand x + h € A} = A® B.(0) = ] Bc(a). (2.3)

acA

This operation ‘thickens’ the boundary of a set by e. With this notation, (2.2) can be
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expressed as R(f) = [ 1i<oydP1 + [ 1{ps03dPo.
Unlike the classification risk R, finding minimizers to R¢ is nontrivial. One can re-write
R¢ in terms of P and 7 but the resulting integrand cannot be minimized in a pointwise

fashion. Nevertheless, it can be shown that minimizers of R® exist [2, 16, 26, 52].

2.3.2 SURROGATE RISKS

As minimizing the empirical version of risk in (2.1) is computationally intractable, typical
machine learning algorithms minimize a proxy to the classification risk called a surrogate risk.
In fact, Ben-David, Eiron, and Long [9] show that minimizing the empirical classification

risk is NP-hard in general. A popular surrogate is

Ry(f) = / o(f)dP, + / b(— )P, (2.4)

! To define a classifier, one then threshholds f at zero.

where ¢ is a decreasing function.
There are many reasonable choices for ¢—one typically chooses an upper bound on the

zero-one loss which is easy to optimize. We make the following assumption on ¢:

Assumption 1. The loss ¢ is non-increasing, non-negative, lower semi-continuous, and

lim, 00 ¢(a) = 0.

A particularly important example, which plays a large role in our proofs, is the exponen-
tial loss ¢ (a)) = €=, which will be denoted by 1 in the remainder of this paper. Assumption 1
includes many but not all all surrogate risks used in practice. Notably, some multiclass sur-
rogate risks with two classes are of a somewhat different form, see for instance [59] for more

details.

!Notice that due to the asymmetry of the sign function at 0 in (2.1), R, is not quite a generalization of
R.
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In order to find minimizers of Ry, we rewrite the risk in terms of P and 7 as

Ry(f) = /n(X)¢(f(X)) + (1 = n(x))o(—f(x))dP (2.5)

Hence the minimizer of R4 must minimize Cy(, -) pointwise P-a.e., where

Co(n, ) = né(a) + (1 —n)g(—a).

In other words, if one defines C7;(n) = inf, Cy(n, @), then a function f* is optimal if and
only if
n(x)o(f*(x)) + (1 = n(x))o(—f"(x)) = C4(n(x))  P-ae. (2.6)

Thus one can write the minimum value of Ry as

ymm:/qwm. (2.7)

To guarantee the existence of a function satisfying (2.6), we must allow our functions to take
values in the extended real numbers R = R U {—o00, +00}. Allowing the value a = 400 is

necessary, for instance, for the exponential loss ¥(«a) = e™*:

when 7 = 1, the minimum of
Cy(1,a) = e~ is achieved at o« = +00. In fact, one can express a minimizer as a function

of the conditional probability 7(x) using (2.6). For a loss ¢, define ay : [0,1] — R by
ay(n) = inf{a : a is a minimizer of Cy(n,-)}. (2.8)

Lemma 25 in Appendix A.3 shows that the function a4 is monotonic and «a,(n) is in fact a

minimizer of Cy(n,-). Thus

f (%) = ag(n(x)) (2.9)

is measurable and satisfies (2.6). Therefore, the function f* must be a minimizer of the risk
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Ry.
Similarly, rather directly minimizing the adversarial classification risk, practical algo-

rithms minimize an adversarial surrogate. The adversarial counterpart to (2.4) is

Ry(f) = /Sup o(f(x+h))dPy +/|sup o(—f(x + h))dPy. (2.10)

Ihl<e |h||<e

Due to the definitions of the adversarial risks (2.2) and (2.10), the operation of finding
the supremum of a function over e-balls is central to our subsequent analysis. For a function

g, we define

Se(9)(x) = Sup g(x+h) (2.11)

Using this notation, one can re-write the risk I as

R(f) :/SE(¢of)d]P’1—|—/Se(gbo—f)d]P’O

By analogy to (2.5), we equivalently write the risk R in terms of P’ and »:

Ry(5) = [ 10560 ) + (1= (x))S.(6 0 ~F) (x)aP. 212

However, unlike (2.5), because the integrand of R§ cannot be minimized in a pointwise man-
ner, proving the existence of minimizers to Rf is non-trivial. In fact, unlike the adversarial

classification risk Rf, there is little theoretical understanding of the properties of R,.

2.3.3 MEASURABILITY

In order to define the adversarial risks R and R, one must show that Sc(14),5:(¢ o f)
are measurable. To illustrate this concern, Pydi and Jog [52] show that for every € > 0

and d > 1, there is a Borel set C' for which the function S.(1¢)(x) is not Borel measurable.
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However, if g is Borel, then S.(g) is always measurable with respect to a larger o-algebra
called the universal o-algebra % (R?). Such a function is called universally measurable. We

prove the following theorem and formally define the universal o-algebra in Appendix A.1.
Theorem 1. If f is universally measurable, then S.(f) is also universally measurable.

In fact, in Appendix A.1, we show that a function defined by a supremum of a universally
measurable function over a compact set is universally measurable—a result of independent
interest. The universal o-algebra is smaller than the completion of B(R?) with respect to any
Borel measure. Thus, in the remainder of the paper, unless otherwise noted, all measures
will be Borel measures and the expression [ S.(f)dQ will be interpreted as the integral of

Se(f) with respect to the completion of Q.

2.3.4 THE W, METRIC

In this section, we explain how the integral of a supremum [ S.(f)dQ can be expressed in

terms of a supremum of integrals. We start by defining the Wasserstein-oo metric.

Definition 2. Let P, Q be two finite measures with P(R?) = Q(R?). A coupling is a positive
measure on the product space R x R with marginals P, Q. We denote the set of all couplings
with marginals P, Q by (P, Q). The co-Wasserstein distance with respect to a norm || - ||
1s defined as

WP, Q)= inf esssup|x—x
£.0) =t essplx—x|

Jylha [33, Theorem 2.6] proves that the infimum is always attained. Therefore, P, Q are
within a Wasserstein-oco distance of € if there is a coupling v for P and Q for which supp
is contained in the set A, = {(x,x’): ||x — x/|| < €}. This optimal coupling will be a useful
tool in proving theorems throughout this paper.

The oo-Wasserstein metric is closely related to the to the operation S.. First, we show

that S. can be expressed as a supremum of integrals over a Wasserstein-oo ball. For a
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measure Q, we write

B>X(Q) = {Q Borel : W, (Q,Q") < ¢}

Lemma 3. Let Q be a finite positive Borel measure and let f: R? — R U {oo} be a Borel

measurable function. Then

[sinaa= sw [ a (2.13)
(Q)

Q' eBx

Lemma 5.1 of Pydi and Jog [52] proves an analogous statement for sets, namely that
Q(A°) = supg¢ B (Q) Q(A), under suitable assumptions on Q and Q'.

Conversely, the W, distance between two probability measures can be expressed in terms
of the integrals of f and S.(f). Let Cy(X) be the set of continuous bounded functions on

the topological space X.

Lemma 4. Let P,Q be two finite positive Borel measures with P(R?) = Q(R?). Then

Weo(P, Q) = inf{e > 0: /hd@ < /Se(h)dIP’ Vh € Cy(R%)}

This observation will be central to proving a duality result. See Appendix A.2 for proofs

of Lemmas 3 and 4.

2.4 MAIN RESULTS AND OUTLINE OF THE PAPER

2.4.1 SUMMARY OF MAIN RESULTS

Our goal in this paper is to understand properties of the surrogate risk minimization problem

inf; 5. The starting point for our results is Lemma 3, which implies that inf; Rj actually
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involves a inf followed by a sup:

inf RG(f)= inf  sup /gbodeP)' /gbo—deP”

f Borel f Borel P} €B2° (Py)
Pl GBOO (IPl

We therefore obtain a lower bound on inf; R by swapping the sup and inf and recalling the
definition of C(n) = inf, Cy(n, @):

inf Ry(f)> sup  inf /gbofd[P"1+/¢o—fdP6

f Borel ]P" 1 €B2° (Po) f Borel
"eBX(P1)
dP" dP!
= su inf -1 + 1——1) —Ad(P, + P
Pfegw%o)fmel/ e+ (1= g ) AN+
P, B> (Py)
> /C* ( Py ) d(Py + P)) (2.14)
> sup S S . )
P, B (Po) d(Py +Py) ‘ '
P} eB2° (P1)
If we define
R(IP” IP"):/C’* Lpll d(Py + P)) (2.15)
o\ T ) d(]I%—l—]P’D 0 1/ .
then we have shown
inf RS(f)> sup Ry(Py,P)). (2.16)
f Borel PBEB?O (]on)
P} eB° (1)

This statement is a form of weak duality.

When the surrogate adversarial risk is replaced by the standard adversarial classification
risk, Pydi and Jog [52] proved that the analogue of (2.16) is actually an equality, so that
strong duality holds for the adversarial classification problem. Concretely, by analogy to

(2.15), consider

/ / * dIP)/ / /
R(P,,P)= [ C TF 1T (P} +P,).
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Let u be the Lebesgue measure and let £,,(R?) be the Lebesgue o-algebra. Then define

B> (Q) = {Q: Wo(Q,Q) < ¢,Q a measure on (R, £,(R?))}. (2.17)

Pydi and Jog [52] show the following.

Theorem 5 ([52, Theorem 7.1]). Assume that Py, Py are absolutely continuous with respect

to the Lebesgue measure . Then

wt R()= s @) @15
f Lebesgue PLeBX(Po)
P, €BX(P1)

and furthermore equality is attained at some Lebesque measurable f and Py, Py.

Additionally, P; = P; o ! for some universally measurable ¢; with ||p;(x) — x| < e,
SUP|ly —xij<e L(y)<o = Lj(prx)<0 17065 and subpy _sy<c 1y)s0 = Lj(pex)>0 FPo-a-e-

This is a foundational result in the theory of adversarial classification, but it leaves an
open question crucial in applications: Does the strong duality relation extend to surrogate

risks and to general measures? In this work, we answer this question in the affirmative.

We start by proving the following:

Theorem 6 (Strong Duality). Let Py, Py be finite Borel measures. Then

inf RG(f)= sup Ry(Ppy,Py). (2.19)
f Borel ]P)E)GBSO(]PO)
PreBe(P1)

When € = 0, we recover the fundamental characterization of the minimum risk for stan-

dard (non-adversarial) classification in (2.7). Theorem 6 can be rephrased as

inf  sup  R4(f, Py, P) = sup inf Ry(f,P),P)) (2.20)
f Borel PBEB?O(IPO) PBEB?O (PO) f Borel
P} €8 (P1) P} eB (1)
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where

Ro(f. ). P)) = / o(f)dP, + / o(—1)dP)

As discussed in Pydi and Jog [52], this result has an appealing game theoretic interpreta-
tion: adversarial learning with a surrogate risk can be though of as a zero-sum game between
the learner who selects a function f and the adversary who chooses perturbations through
P}, and P}. Furthermore, the player to pick first does not have an advantage.

Additionally, (2.20) suggest that training adversarially robust classifiers could be accom-
plished by optimizing over primal functions f and dual distributions Pf, P} simultaneously.

A consequence of Theorem 6 is the following complementary slackness conditions for

optimizers f*, Py, Pi:

Theorem 7 (Complementary Slackness). The function f* is a minimizer of R, and (Pg, P})

is a mazimizer of Ry over the W, balls around Py and Py iff the following hold:

1)
[oorai= [sinie ad [oo-rar= [ sy (@2
9) If we define P* = P + P} and i* = dP*/dP*, then
OO () + (1= 1" (NG~ () = Co('(x)) Proace.  (2:22)

This theorem implies that every minimizer f* of R and every maximizer (Pg,P}) of
R4 forms a primal-dual pair. The condition (2.21) states that every maximizer of Ry is
an optimal adversarial attack on f* while the condition (2.22) states that every minimizer
f* of R also minimizes the conditional risk Cg(n*,-) under the distribution of optimal
adversarial attacks. Explicitly: (2.22) implies that every minimizer f* minimizes the loss
Ry(f,P5,P%) = [ C(n*(x), f(x))dP* in a pointwise manner P*-a.e., or in other words, the
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function f* minimizes the standard surrogate risk with respect to the optimal adversarially
perturbed distributions. This fact is the relation (2.6) with respect to the measures Pg, P}
that maximize the dual Ry.

This interpretation of Theorems 6 and 7 shed light on the phenomenon of transfer attacks.
These theorems suggests that adversarial examples are a property of the data distribution
rather than a specific model. Later results in the paper even show that there are maximizers
of R, that are independent of the choice of loss function ¢ (see Lemma 26). Theorem 7
specifically states that every maximizer of R¢, is actually an optimal adversarial attack on
every minimizer of Rj. Notably, this statement is indepent of the choice of minimizer of
Rj. Because neural networks are highly expressive model classes, one would hope that some
neural net could achieve adversarial error close to infy Rg(f). If f* is a minimizer of R
and g is a neural net with R%(g) ~ Rg(f*), one would expect that an optimal adversarial
attack against f* would be a successful attack on g as well. Notice that in this discussion,
the adversarial attack is independent of the neural net g. A method for calculating these
optimal adversarial attacks is an open problem.

Finally, to demonstrate that Theorem 7 and the preceding discussion is non-vacuous, we
prove the existence of primal and dual optimizers along with results that elaborate on their

structure.

Theorem 8. Let ¢ be a lower-semicontinuous loss function. Then there exists a mazximizer

(P35, %) to Ry over the set B> (Py) x B> (Py).

Theorem 3.5 of [33] implies that when the norm || - || is strictly convex and Py, [P, are
absolutely continuous with respect to Lebesgue measure, the optimal IPjj, P} of Theorem 8 are
induced by a transport map. Corollary 3.11 of [33] further implies that these transport maps
are continuous a.e. with respect to the Lebesgue measure p. As the /., metric is commonly
used in practice, whether there exist maximizers of the dual of this type for non-strictly
convex norms remains an attractive open problem.
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In analogy with (2.6) and (2.9) one would hope that due to the complementary slackness
condition (2.22), one could define a minimizer in terms of the conditional n*(x). Notice,
however, that as this quantity is only defined P*-a.e., verifying the other complementary
slackness condition (2.21) would be a challenge. To circumvent this issue, we construct a
function /) : R4 — [0, 1], defined on all of RY, to which we can apply (2.9). Concretely, we

show that a,(7(x)) is always a minimizer of RS, with oy as defined in (2.8).

Theorem 9. There exists a Borel function 1) : (suppP)¢ — [0, 1] for which f*(x) = ay(n(x))
is a minimizer of Ry for any ¢ with oy as in defined in (2.8). In particular, there ezists a

Borel minimizer of R

In fact, we show that 7 is a version of the conditional derivative dPj/dP*, where P, P;
are the measures which maximize R, independently of the choice of ¢ (see Lemma 24), as
described in the discussion preceding Theorem 8. The fact that the function 7) is independent
of the choice of loss ¢ suggests that the minimizer of R encodes some fundamental quality
of the distribution Pg, P;.

Simultaneous work [36] also proves the existence of a minimizer to the primal R along
with a statement on the structure of this minimizer. Their approach leverages prior results

on the adversarial Bayes classifier to construct a minimizer to the adversarial surrogate risk.

2.4.2 OUTLINE OF MAIN ARGUMENT

The central proof strategy of this paper is to apply the Fenchel-Rockafellar duality theorem.
This classical result relates the infimum of a convex functional with the supremum of a
concave functional. One can argue that R, is concave (Lemma 12 below); however, the
primal [ is not convex for non-convex ¢. Thus the Fenchel-Rockafellar theorem is applied
to a convex relaxation © of the primal Rf.

The remainder of the paper then argues that minimizing © is equivalent to minimizing
Rg. Notice that the Fenchel-Rockafellar theorem actually implies the existence of dual
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~ satisfy certain nice

maximizers. We show that that dual maximizers of R, for ¢ (a) = e
properties that are independent of the loss 1. These properties then allow us to construct
the function 7 present in Theorem 9 in addition to minimizers of © from the dual maximizers

of Ry, for any loss ¢. The construction of these minimizers guarantee that they minimize

R; in addition to ©.

2.4.3 PAPER OUTLINE

Section 2.5 proves strong duality and complementary slackness theorems for R, and O, the
convex relaxation of Rj. Next, in Section 2.6, a version of the complementary slackness
result is used to prove the existence of minimizers to ©. Subsequently, Section 2.7 shows the
equivalence between © and R,

Appendix A.1 proves Theorem 1 and further discusses universal measurability. Next, Ap-
pendix A.2 proves all the results about the W,-norm used in this paper. Appendix A.3 then
defines the function o, which is later used in the proof of several results. Appendices A.4,

A5, A.6, and A.7.3 contain technical deferred proofs.

2.5 A DUALITY RESULT FOR © AND R,

2.5.1 STRONG DuALITY

The fundamental duality relation of this paper follows from employing the Fenchel-Rockafellar
theorem in conjunction with the Riesz representation theorem, stated below for reference.

See e.g. [65] for more on this result.

Theorem 10 (Fenchel-Rockafellar Duality Theorem). Let E be a normed vector space E*
its topological dual and ©, = two convex functionals on E with values in RU{oo}. Let ©* =*

be the Legendre-Fenchel transforms of ©,Z respectively. Assume that there exists zg € E
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such that

O(z0) < 00,Z(zp) < 00

and that © is continuous at zy. Then
inf[©(z) + =Z(2)] = sup [-O"(z") — E*(—2")] (2.23)

and furthermore, the supremum on the right hand side is attained.

Let M(X) be the set of finite signed Borel measures on a space X and recall that C,(X)

is the set of bounded continuous functions on the space X.

Theorem 11 (Riesz Representation Theorem). Let K be any compact subset of R?. Then
the dual of Cy(K) is M(K).

See Theorem 1.9 of [65] and result 7.17 of [22] for more details.

Notice that in the Fenchel-Rockafellar theorem, the left-hand side of (2.23) is convex
while the right-hand side is concave. However, when ¢ is non-convex, Rf is not convex. In
order to apply the Fenchel-Rockafellar theorem, we will relax the primal Rg will to a convex

functional ©.

We define © as
O(ho, h1) = /Se(hl)le’l +/S€(h0)dIP’0 (2.24)

which is convex in hg, h; due to the sub-additivity of the supremum operation. Notice that
one obtains © from Rj by replacing ¢ o f with hy and ¢ o —f with hy.

The functional = will be chosen to restrict hg, hy in the hope that at the optimal value,
hy = ¢(f) and hg = ¢(—f) for some f. Notice that if hy = ¢(f), ho = ¢(—f) then for all
n € [0,1],

nhi (%) + (1 =n)ho = 1n6(f)) + (1L = n)o(=f) = C5(n).
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Thus we will optimize © over the set of functions S, defined by

(ho,h1): ho,h1: K¢ — R Borel, 0 < hg, hy and for
S, = (2.25)
all x e RY, 7 € [0,1], nho(x) + (1 — 1)hi(x) > Ci(n)

where K = supp(Py UP;). (Notice that the definition of S.(g) in (2.11) assumes that the

domain of ¢ must include B.(x). Thus in order to define the integral [ S.(h)dQ, the domain

of h must include (supp Q)¢.) Thus we define = as

0 if (ho,h1) € Sy
E(ho, h1) = (2.26)

+00 otherwise

The following result expresses R, as an infimum of linear functionals continuous with
respect to the weak topology on probability measures. This lemma will assist in the compu-
tation of =*. In the remainder of this section, M (S) will denote the set of positive finite

Borel measures on a set S.

Lemma 12. Let K C R? be compact, E = Cy(K€) x Cy(K®), and Py, P} € M (K€). Then

in / hadP, + / hodP) = Ry(P), P)) (2.27)

(h07h1)€S¢ﬁE

Therefore, Ry is concave and upper semi-continuous on M (K€) x M (K¢) with respect

to the weak topology on probability measures.

We sketch the proof and formally fill in the details in Appendix A.4. Let P’ = P + P},
n' = dP}/dP'. Then

/hld]P)/l + / hod]P){) = /n/hl -+ (1 — U/)hod]P)/
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Clearly, the inequality > holds because n'h1 + (1 — 7')hg > Cj(n') for all (ho,h1) € Sy.
Equality is achieved at hy = ¢(as(n')), ho = ¢(—a(n')), with oy as in (2.8). However, these
functions may not be continuous. In Appendix A.4, we show that hg, hy can be approximated

arbitrarily well by elements of S, N E.

Lemma 13. Let ¢ be a non-increasing, lower semi-continuous loss function and let Py, Py

be compactly supported finite Borel measures. Let Sy be as in (2.25).

Then
inf @(ho, hl) = sup R¢<P6, ]Pll) (228)
(ho,h1)€Sy P6€B?°(PO)
]P’IIEBSO(]Pl)

Furthermore, there exist P§, IP7 which attain the supremum.

Proof. We will show a version of (2.28) with the infimum taken over Sy N E, and then argue
that the same claim holds when the infimum is taken over S,.

Notice that if hg, hy are continuous, then S(hg), Sc(h) are also continuous and [ S,(hg)dQ,
[ Sc(h1)dQ are well-defined for every Borel Q. Hence we assume that Py, P are Borel mea-
sures rather than their completion.

Let K = supp(Py + P;). We will apply the Fenchel-Rockafellar Duality Theorem to the
functionals given by (2.24) and (2.26) on the vector space F = C,(K*) x Cy(K*€) equipped
with the sup norm. By the Riesz representation theorem, dual of the space F is E* =
M(K€) x M(K°).

To start, we argue that the Fenchel-Rockafellar duality theorem applies to these func-
tionals. First, notice that if (hg,hy) € F, then both hg, hy are bounded so ©(hg, h;) < oo.
Furthermore, © is convex due to the subadditivity of supremum and = is convex because the
constraint ho(x) + (1 —n)hi(x) > C5(n) is linear in ho and hy. Furthermore, © is continuous
on FE because © is convex and bounded and E' is open, see Theorem 2.14 of [7].

Because the constant function (C3(1/2),C%(1/2)) is in Sy, = is not identically oo and
therefore the Fenchel-Rockafellar theorem applies.
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Clearly infg ©(ho, h1) + Z(ho, h1) reduces to the left-hand side of (2.28).
We now compute the dual of =. Lemma 12 implies that

—=Z(-P;, —Py) =—  sup —/hodPg—/hldP’l (2.29)
(ho,h1)ESyNE

Ro(ByB}) P> 0

—00 otherwise

This computation implies that the term —=*(—Pj, —P}) present in the Fenchel-Rockafellar
Theorem is not —oo iff P, P} are positive measures. Next, notice that because ©(hg, hy) <
+oo for all (hg, hy) € E, —O*(P;,P}) is never +oo. Therefore, it suffices to compute ©* for

positive measures Pj, P}. Lemma 4 implies that for positive measures P, P},

O*(P),P)) = sup /hldIP”l +/h0d19>g - (/ Se(ho)dIP’onL/Se(hl)dIPl)
(k)

ho,h1€Co

= sup (/ h,dP} —/Se(hl)dIP’l) + sup (/ hodP;, —/Se(ho)dIP’o—i-)
h1€Co(K*€) ho€Co(K*)

0 Py, P} positive measures, with W (Py,Py) < € and W (P},P) <

+oo [Py, [P} positive measures, with either W (P}, Py) > € or W (P}, Py) > €

Therefore

sup  —O(P), P)) —Z(~Py, —P}) = sup Ry(P),P})
P) P, EM(K<) PoeBe (Po)
PreBg (P1)

and furthermore there exist measures P§, P} maximizing the dual problem. Therefore the
Fenchel-Rockafellar Theorem implies that

inf  ©O(ho, hy) < inf  O(hg,h) = sup Ry(Py,P))

(ho’hl)es¢ - (ho,h1)€S¢mE ]P’E)EBSO(P())
P e (1)
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The opposite inequality follows from the weak duality argument presented in (2.16) in Sec-

tion 2.4.1. See Lemma 125 of Appendix A.5 for a full proof. O]

Note that this proof does not easily extend to an unbounded domain X: for a non-
compact space, the dual of Cy,(X) is much larger than M(X), and thus a naive application
of the Fenchel-Rockafellar Theorem would result in a different right-hand side than (2.28).
On the other hand, the Reisz representation theorem for an unbounded domain X states
that the dual of Cy(X) is M(X), where Cy(X) is the set of continuous bounded functions
vanishing at co. At the same time, if ho, hy € Co(X), then nhy(x) + (1 — n)ho(x) becomes
arbitrarily small for large x so the constraint nhy(x) + (1 — n)ho(x) > Cj(n) cannot hold
for all n. Thus if K is unbounded, Sy N Cy(X) = 0 and the functional = would be +o0
everywhere on Cy(X), precluding an application of the Fenchel-Rockafellar Theorem.

However, Lemma 13 can be extended to distributions with arbitrary support via a simple

approximation argument. By Lemma 13, the strong duality result holds for the distributions

defined by Py = Py|5—r, PT = Py |

RO . One then shows strong duality by computing the

By (0)
limit of the primal and dual problems as n — co. We therefore obtain the following Lemma,

which is proved formally in Appendix A.5.
Lemma 14. Let ¢ be a non-increasing, lower semi-continuous loss function and let Py, Py

be finite Borel measures supported on R?. Let Sy be as in (2.25). Then

inf  O(hg,h1) = sup Ry(P),P))
(ho,h1)€ESy Py eBX(Py)
P, eB (1)

Furthermore, there exist PG, P} which attain the supremum.
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2.5.2 COMPLEMENTARY SLACKNESS

Using a standard argument, strong duality (Lemma 14) allows us to prove a version of the

complementary slackness theorem.

Lemma 15. Assume that Py,Py are compactly supported. The functions h, hi minimize ©

over Sy and (P, PY) mazimize Ry over BX(Py) x B> (Py) iff the following hold:

1)
/ hidP; = / S.(ht)dP;  and / hidP: = / S (ht)dP, (2.30)

2) If we define P* = P§ 4+ P} and n* = dP}/dP*, then

7 (x)h1(x) + (1 = 0" (%) ho(x) = C5(n" (%)) P*-a.e. (2.31)

This lemma is proved in Appendix A.6. Theorem 7 will later follow from this result.

To show that Lemma 15 is non-vacuous, one must prove that there exist minimizers to ©
over Sy, which we delay to Sections 2.6 and 2.7. Notice that the application of the Fenchel-
Rockafellar Theorem in Lemma 13 actually implies the existence of dual maximizers in the
case of compactly supported Py, P;.

In fact, the complementary slackness conditions hold approximately for any maximizer
of Ry and any minimizing sequence of ©. This result is essential for proving the existence

of minimizers to ©.

Lemma 16. Let (hy,h}) be a minimizing sequence for © over Sy: lim, .. O(h{,h}) =
inf (hy nyes, O(ho, hi). Then for any mazimizer of the dual problem (Pg,IP7), the following
hold:

1)

n—oo

lim | S.(h?)dP, — / hrdPy =0, lim [ S.(h7)dP; — / WP =0 (2.32)
n—oo
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2) If we define P* = P§ + P} and n* = dP; /dP*

lim [ "R 4 (1 — ")l — O )dP* = 0 (2.33)

n—o0

Proof. Let

= inf ©O(hy, hy).
m (ho,}fbe% (ho, h1)

Then the fact that (hg, h?) € S, and the duality result (Lemma 14) implies
/ B P} + / B Py = / phY 4 (1 — o hndP* > / C3(")dP* = m (2.34)
Now pick 6 > 0 and an N for which n > N implies that ©(h{, h}) < m + J. Then
m s> /Se(h?)dIPl + /Sg(hg)dIPO > /n*hff + (1= p")hndP* > m.
Subtracting m = [ Cj(n*)dP* from this inequality results in
5> /n*h’f + (1 — p)hndP* — /Cj;(n*)dIP* >0 (2.35)
which implies (2.33). Next, (2.34) further implies
m — /h’deP’*{ +/h6‘dIP’;§ <0 (2.36)

Now this inequality implies

§>6+m— (/ h’fd]P’{Jr/hngP’;) > O(hY,hl) — (/ h?dP’{+/h§dP;§>
> ( / S.(h1)dP; + / Se(hg‘)dIP’()) - ( / W dP; + / hngP(’;)
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However, Lemma 3 implies that both [ Sc(h})dPy — [ hdP}, [ Se(hy)dPy — [ hydP§ are
positive quantities. Therefore, we have shown that for any é > 0, there is an N for which

n > N implies that

5> /Sg(h?)d]P’l - /h?dIP”{ >0 and 0> /Se(hg)dIP’o - /hngP’é >0

which implies (2.32).

]

An analogous approximate complementary slackness result typically holds in other appli-
cations of the Fenchel-Rockafellar theorem. Consider a convex optimization problem which
can be written as inf, ©(z)+Z(z) in such a way that the Fenchel-Rockafellar theorem applies
and for which = and ©* are indicator functions of the convex sets Cp, Cp respectively. Then

the Fenchel-Rockafellar Theorem states that

inf ©(x) = inf sup (y,x) = sup inf (y,z) = sup =~ 2.37
[ Olw) = nf sup {yz) = sup inf (y,z) = sup =(y) (2.37)

Let y* be a maximizer of the dual problem and let m be the minimal value of © over Cp.
If zx is a minimizing sequence of ©, then for § > 0 and sufficiently large k, § + m > O(xy)

and thus by (2.37),

m+ 3> O(xg) = sup(y,zx) > (y*,xx) > inf (y*,z) = inf Z(z) =m (2.38)

yeCyp z€Cp zeCp

and therefore limg_,oo(y*, zx) = m. Condition (2.31) is this statement adapted to the
adversarial learning problem. Furthermore, subtracting ©(z;) from (2.38) and taking the
limit £ — oo results in limg_,, O(zx) — (y*, zx) = 0. In our adversarial learning scenario,
this statement is equivalent to the conditions in (2.32) due to Lemma 3. Furthermore, just

like the standard complementary slackness theorems, the relations limg_,oo(y*, xx) = m,
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limy 00 O(zx) — (¥*, 2x) = 0 imply that x; is a minimizing sequence for ©.

In the classical proof of the Kantorovich duality, one can choose ©,Z= of a form similar
to the discussion above, see for instance Theorem 1.3 of [65]. Using an argument similar
to (2.38), one can prove approximate complementary slackness for the Kantorovich problem
called the quantitative Knott-Smith criteria, see Theorems 2.15, 2.16 of [65] for further

discussion.

2.6 EXISTENCE OF MINIMIZERS TO © OVER Sy

After proving the existence of maximizers to the dual problem, we can now use the approxi-
mate complementary slackness conditions to prove the existence of minimizers to the primal.

The exponential loss ¢ has certain properties that make it particularly easy to study:

Lemma 17. Let ¢(a) = e, Then Cj(n) = 2y/n(1 —n) and ay(n) = 1/2log(n/1 —n)
is the unique minimizer of Cy(n,-), with ay(0), ay (1) interpreted as —oo, 400 respectively.

Furthermore, 0C,(n) is the singleton 0C;,(n) = {1 (ay(n)) — Y(—ayp(n))}.

See Appendix A.7.1 for a proof. The existence of minimizers of © for the exponential loss
then follows from properties of Cy. Let (h3,h}) be a minimizing sequene of Rs. Because
the function Cy is strictly concave, one can use the condition (2.33) to show that there
is a subsequence {ng} along which hy*(x’), hi*(x’) converge P§, Pj-a.e. respectively. Due
to (2.32), Sc(hg®)(x), Sc(hi*) also converge Py, Pj-a.e. respectively along this subsequence.
This observation suffices to show the existence of functions that minimize © over Sy.

The first step of this proof is to formalize this argument for sequences in R.

Lemma 18. Let (a,,b,) be a sequence for which a,,b, > 0 and
Nay + (1 —n)b, > Cy(n) for all n € [0,1] (2.39)
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and

lim 1o, + (1 = 10)bs = C (o) (2.40)

n—o0

for some ny. Then lim,,_,o0 an, = Y(ay(no)) and lim,, . by, = P(—aw(no)).

Notice that if na + (1 —n)b > Cj(n) and noa + (1 — n9)b = C;(mo), then this lemma
implies that a = (v (n)) and b = P (—aw(no))-

To prove Lemma 18, we show that all convergent subsequences of {a,} and {b,} must
converge to a and b that satisfy noa + (1 —10)b = Cj(m0) and a — b € 9C}(mp). As the set
dCy (o) is a singleton, the values a = 9(ay(mo)) and b = ¥(ay(no)) uniquely solve these
equations for a and b. Therefore the sequences {a,} and {b,} must converge to a and b as
well. See Appendix A.7.2 for a formal proof. This result applied to a minimizing sequence

of © allows one to find a subsequence with certain convergence properties.

Lemma 19. Let (hy, h}) be a minimizing sequence of © over Sy. Then there exists a

subsequence ny, for which Sc(hi*), Sc(hi*) converge Py, Py-a.e. respectively.

Proof. Let Pj, P} be maximizers of the dual problem. Let «; be the coupling between P;, P}

(2

with supp~; C A..

Then (2.33) of Lemma 16 implies that

lim [ " (x)h (X)) + (1 = " (x) hg (x') — Cy (" (X)) d(71 + ) (x,x) = 0

n—oo

and (2.32) implies that
lim [ S.(h})(x) — A} (X )dn(x,x') =0, lim [ Sc(hy)(x)— h{(x)dy(x,x") =0

n—oo n—oo

Recall that on a bounded measure space, L' convergence implies a.e. convergence along a
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subsequence (see Corollary 2.32 of [22]). Thus one can pick a subsequence ny along which

T " ()3 () + (1= " ()R () — Gl (%) = 0 (2.4
Y1 + Yo-a.e. and
lim S.(h7*)(x) — h1*(x') =0, lim S.(hg")(x) — ho*(x') =0 (2.42)
k—o0 k—o0

Y1, Yo-a.e. respectively.

Furthermore, nht + (1—n)hg > C;(n) for all n € [0, 1]. Thus (2.41) and Lemma 18 imply
that h, converges to 1(ay(n*)) and h) converges to ¥ (—ay(n*)) 7o+ 71-a.e. Equation 2.42
then implies that S.(hy*)(x), Sc(hy*)(x) converge 71,70 -a.e. respectively. Because Py, P

are marginals of ;,7p, this statement implies the result. O]

The existence of a minimizer then follows from the fact that S.(h}*) converges. The next

lemma describes how the S, operation interacts with liminfs and lim sups.

Lemma 20. Let h,, be any sequence of functions. Then the sequence h,, satisfies

h}ggf Se(hyn) > Se(hgglogf hy) (2.43)
and
lim sup Se(hy,) > Se(limsup h,,) (2.44)
n—ro0 n—oo

See Appendix A.7.3 for a proof.

Finally, we prove that there exists a minimizer to © over Sy.
Lemma 21. There exists a minimizer (hy, hi) to © over the set S.

Proof. Let (h{,hY) be a sequence minimizing © over Sy.
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Lemma 19 implies that there is a subsequence {n;} for which limy_, Sc(h*) exists
Po-a.e.
Thus
lim sup Sc(hg*) = lig(i)lgf Se(hy*)  Py-a.e. (2.45)

k—o0

Next, we will argue that the pair (limsup,, ho*, liminf A7) is in Sy. Because

Cy(n) < nhi* + (1 —n)hg*,
one can conclude that

Cy,(n) < nliminf(AT* + (1 = n)hg*) < nliminf AY* + (1 — n) lim sup hg*.
k—o0 k—o0

k—o00

Define

hi = limkinf hi*,  hi= limksup hg*

Now Fatou’s lemma, Lemma 20, and Equation 2.45 imply that

lim ©(hy*, hi*) > /lim inf S.(h1*)dP; + /lim inf S.(hy*)dP,  (Fatou’s Lemma)
k—o0 k—o0 k—o0

= /li}gn inf S (hy*)dP, + /lim sup S (hy*)dPy (Equation 2.45)
—ro0 k—oo
> /Se(lign inf AY*)dPy + /Se(lim sup hg*)dPy (Lemma 20)
0 k—o0

_ / S.(h?)dPy + / S.(h?)dP,

Therefore, (hf, h) must be a minimizer.
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2.7 REDUCING © TO R;

Using the properties of C;Z(n), we showed in the previous section that there exist minimizers
to © over the set Sy. The inequality nhi + (1 — n*)hg > Cj(n) together with (2.31) imply
that hj(x) — hg(x) is a supergradient of C7(n*(x)) and thus hi —hi = (C7)'(n). This relation
together with (2.31) provides two equations in two variables that can be uniquely solved for
hé, by, resulting in by = 1 o —ay(n*), hi = 1 o ay(n®).

Next, primal minimizers of © over S, for any ¢ will be constructed from the dual max-
imizers P§, Pt of Ry. Because ay(n) = 1/2log(n/1 —n) is a strictly increasing function,
the compositions 1) o ay, 1 o —a, are strictly monotonic. Thus the complementary slack-
ness condition (2.30) applied to hi = ¥(ay(n*)), b = Y(—ay(n*)) implies that supp Pj is
contained in the set of points x’ for which n* assumes its infimum over some e-ball at x’
and supp P§ is contained in the set of points x’ where n* assumes its supremum over some
e-ball at x’'. Thus, the functions ¢ o ay,(n*), d o —ag(n*) satisfy (2.30) for the loss ¢. The
definition of a further implies they satisfy (2.31). Therefore, Lemma 15 implies that for
any ¢, hi = ¢ o ay(n*), hi = ¢ o ay(n*) are primal optimal and P§, P are dual optimal!

This reasoning about n* is technically wrong but correct in spirit. Because n* is a Radon-
Nikodym derivative, it is only defined P*-a.e. As a result, the supremum over an e-ball of
the function ¢(ay(n*)) is not well-defined. The solution is to replace n* in the discussion
above by a function 7) that is defined everywhere. The function 7 is actually a version of the
Radon-Nikodym derivative dIP;/dP*. The next two lemmas describe how one constructs this
function 7).

The next two lemmas discuss the analog of the ¢ transform for the Kantorovich problem

in optimal transport (see for instance Chapter 1 of [55] or Section 2.5 of [65]).

Lemma 22. Assume that ho,hy > 0 and (ho(x), h1(x)) satisfy nhy + (1 —n)ho = C}(n) for
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all n. Then if we define hocz’ via

x C%(n) —nh
he® = sup Co(n) — nh (2.46)
nel0,1) I—mn
then hOC; < ho while and h1+(1—n)hg‘; > Cj(n) for alln, and hg‘; is the smallest function hg

C*
for which (ho, h1) € Sy. Furthermore, the function h,® is Borel and there exists a function
® 0

7: RY = [0,1] for which 7(x)h(x) + (1 — 7(x))hy *(x) = C5(7(x)).

Proof. For convenience, set hy = hf‘;. Notice that kg > 0 because the right-hand side of
(2.46) evaluates to 0 at 7 = 0. We will show that kg is Borel and that (ho, hy) is a feasible
pair.

Next, Notice that the map

G ifn <1
G(n,a) = 2.47
(n.0) o (247
Ciln=ne

ifn=1

limnﬁl

is continuous in 7. Thus, the supremum in (2.46) can be taken over the countable set
QN[0, 1] and hence the function h(x) = SUDP,e(0,1)n0 G (1, hi(x)) is Borel measurable. Because
G(n, hy(x)) is continuous in 7 for each fixed x, G(-, hq(x)) assumes its maximum on 7 € [0, 1]
for each fixed x. Thus there exists a function 77(x) that maps x to a maximizer of G(-, hy(x)).

For this function 7(x), one can conclude that ho(x) = G(7j(x),x) and hence

N(x)h1(x) + (1 = 7(x))ho(x) = CZ(7(x))- (2.48)

Equation 2.48 implies that if f(x) < ho(x) at any x, then nhy (x)+(1—7)f(x) < Ci(n(x))
so (f,h1) is not in the feasible set Sy. Therefore, ho is the smallest function f for which

(f,h1) € Sp. O
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Next we use this result to define an extension of 7* to all of R%.

Lemma 23. There exist a Borel minimizer (hi, hi) to © over Sy for which

N(x)hy(x) + (1 = 7(x))hg(x) = C4 (%)) (2.49)

for all x and some Borel measurable function 1: (supp P)¢ — [0, 1].

Proof. Let (hg, hy1), be an arbitrary Borel minimizer to the primal (Lemma 21 implies that
such a minimizer exists). Set h{ = h; and h{ = hfz. Then Lemma 22 implies that h§ < hy,
so (hg, h1) is also optimal and nhy + (1 —n)hy > C;(n) for all 5. Furthermore, Lemma 22
implies that there is a function 7 for which 7)(x)hi(x) + (1 — 7(x))hg(x) = C;(1(x)).

It remains to show that 7 is Borel measurable. We will express 7(x) in terms of hj(x),
and because hi(x) is Borel measurable, it will follow that 7 is Borel measurable as well.
Because nhi(x) + (1 — n)hg(x) > Cj(n) with equality at n = 7(x), it follows that hj(x) —
hy(x) is a supergradient of Cj at n = 7(x). Thus Lemma 17 implies that h} — hy =
(1 —27)/+/7(1 —9) < b = hi + (1 —27)//7(1 — 7). Plugging this expression and the
formula C7(n) = 24/7(1 — 1) into the relation Hhi+(1—7)hy = Cj (1) results in the equation
hy+1(1—27)//n(1 — 7)) = 24/9(1 — ). Solving for 7 then results in i = (h§)?/(1+4 (h§)?).

Because hj is Borel measurable, 7 is measurable as well. O

Notice that this result together with Lemma 18 immediately implies that A} = ¢(aw (7))
and hj = ¥(—ay(n)), immediately proving that minimizing © over S, is equivalent to
minimizing R,. Next, this observation is extended to arbitrary losses using properties of 7).
Because both 1 and «,, are strictly monotonic, 7 interacts in a particularly nice way with

maximizers of the dual problem:

Lemma 24. Let P}, P; be any mazimizer of Ry over B> (Py) x BX(Py). Set P* = P + P},

* = dPj/dP*. Let ) be defined as in Lemma 23. Then 1 = n* P*-a.e.
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Furthermore, let v; be a coupling between P;, P¥ with suppy; C A.. Then

suppy C {(x,X): ”yi_r}l(ﬁgﬁﬁ(Y) = 7(x)} (2.50)
suppyo C {(x,x): b n(y) = n(x')} (2.51)

The statement 7 = n* P*-a.e. implies that 7 is in fact a version of the Radon-Nikodym
derivative dP}/dP*.

For convenience, in this proof, we introduce the notation

L(f)(x) = inf f(y).

ly—xll<e

Proof. Let h{, hi be the minimizer described by Lemma 23. Then Lemma 18 implies that
= blay(i)) and by = b(—ay(i).

The complementary slackness condition (2.31) implies that n*h7+(1—n*)hg = C;(n*) P*-
a.e., and thus Lemma 18 implies that h] = (v (n*)) and hf = ¥ (ay(n*)) P*-a.e. Therefore,
(o (n*)) = Y(ay(n)) P*-a.e. Now because the functions v, ay, are strictly monotonic, they
are invertible. Thus it follows that n = n* P*-a.e.

The complementary slackness condition (2.30) states that

/Sg(hi)(x) — hi(x)dy; = 0.

Therefore,

Se(¥(ay())(x) = P(ay(i(x)) m-ae and  S(d(—ay()))(x) = V(—ayp(i(x)) 7o-ae.
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which implies

oy (Le() (%)) = P(ay(A(x)) y-ae. and  Y(—ay(S(9)(x))) = V(—ay((X))  7o-a-e.

Now %, a, are both strictly monotonic and thus invertible. Therefore

I())(x) =0(x) m-ae. and  Sc(7)(x) =7(x) o-ae.

[]

Next, the relation (2.49) suggests that hf = ¢ o f*, hj = ¢ o —f*, where f* is a function
satisfying Oy (7)(x), f*(x)) = Cj(7(x)). In fact, Lemma 24 implies that this relation holds
for all loss functions, and not just the exponential loss 1. To formalize this idea, we prove

the following result about minimizers of Cy(7,-) in Appendix A.3:

Lemma 25. Fiz a loss function ¢ and let ay(n) be as in (2.8). Then ay, maps n to the

smallest minimizer of Cy(n,-). Furthermore, the function as(n) non-decreasing in 1.

Finally, we use the complementary slackness conditions of Lemma 15 to construct a

minimizer (hg, h}) to © over S, for which hf = ¢ o f*, h = ¢ o —f* for some function f*.

Lemma 26. Let 1) = e~ ® be the exponential loss and let ¢ be any arbitrary loss. Let P, P}
be any mazimizer of Ry over BX(Py) x BX(Py). Define P* = P + P} and n* = dP}/dP*.
Let 1) be defined as in Lemma 25.

Then by = ¢(—au(n)), b = d(ay(n)) minimize © over Sy and (P, P}) mazimize Ry
over BX(Py) x BX(Py).

Thus there exists a Borel minimizer to Rg and infy R§(f) = inf (4,,n,)es, ©(ho, h1).

Proof. We will verify the complementary slackness conditions of Lemma 15.
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Lemma 24 implies that n = n* P*-a.e. Therefore, P*-a.e.,
Co(n*) = C4(n) = Nhy + (1 = N)ho = n"hy + (1 = 1")ho

This calculation verifies the complementary slackness condition (2.31).
We next verify the other complementary slackness condition (2.30). Let ; be a coupling
between P;, P¥ with supp~; C A.. Next, because ¢poay, ¢po—ay are monotonic, the conditions

(2.50) and (2.51) imply that

/¢% dP—/cb% ))di(x,%")
_ / Su(dlo(7))) (x)dm (x,X') = / S.(élao()))dP,

/s 7)) (%) d (%, %) /S 7)))dPy

This calculation verifies the complementary slackness condition (2.30). ]

Theorems 6 and 9 immediately follow from Lemmas 14 and 26.

2.8 (CONCLUSION

We initiated the study of minimizers and minimax relations for adversarial surrogate risks.
Specifically, we proved that there always exists a minimizer to the adversarial surrogate risk
when perturbing in a closed e-ball and a maximizer to the dual problem. Just like the results
of [52], our minimax theorem provides an interpretation of the adversarial learning problem
as a game between two players. This theory helps explain the phenomenon of transfer
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attacks. We hope the insights gained from this research will assist in the development of

algorithms for training classifiers robust to adversarial perturbations.
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3 THE UNIQUENESS OF THE

ADVERSARIAL BAYES CLASSIFIER

3.1 INTRODUCTION

A crucial reliability concern for machine learning models is their susceptibility to adversarial
attacks. Neural nets are particularly sensitive to small perturbations to data. For instance,
[14, 58] show that perturbations imperceptible to the human eye can cause a neural net to
misclassify an image. In order to reduce the susceptibility of neural nets to such attacks,
several methods have been proposed to minimize the adversarial classification risk, which
incurs a penalty when a data point can be perturbed into the opposite class. However,
state-of-the-art methods for minimizing this risk still achieve significantly lower accuracy
than standard neural net training on simple datasets, even for small perturbations. For
example, on the CIFAR10 dataset, [48] achieves 71% robust accuracy for ¢., perturbations
size 8/255 while [21] achieves over 99% accuracy without an adversary.

In the setting of standard (non-adversarial) classification, a Bayes classifier is defined as a
minimizer of the classification risk. This classifier simply predicts the most probable class at
each point. If multiple classes have the same probability, then the Bayes classifier may not be
unique. The Bayes classifier has been a helpful tool in the development of machine learning

classification algorithms [32, Chapter 2.4]. On the other hand, in the adversarial setting,
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computing minimizers of the adversarial classification risk in terms of the data distribution
is a challenging problem. These minimizers are referred to as adversarial Bayes classifiers.
Prior work [1, 11, 50] calculates these classifiers by first proving a minimax principle relating
the adversarial risk with a dual problem, and then showing that the adversarial risk of a
proposed set matches the dual risk of a point in the dual space.

In this paper, we propose a new notions of ‘uniqueness’ and ‘equivalence’ for adversarial
Bayes classifiers in the setting of binary classification under the evasion attack. In the
non-adversarial setting, two classifiers are equivalent if they are equal a.e. with respect to
the data distribution, and one can show that any two equivalent classifiers have the same
classification risk. The Bayes classifier is unique if any two minimizers of the classification
risk are equivalent. However, under this notion of equivalence, two equivalent sets can have
different adversarial classification risks. This discrepancy necessitates a new definition of
equivalence for adversarial Bayes classifiers.

Further analyzing these new notions of uniqueness and equivalence in one dimension re-
sults in a method for calculating all possible adversarial Bayes classifiers for a well-motivated
family of distributions. We apply this characterization to demonstrate that certain forms of
regularity in adversarial Bayes classifiers improve as € increases. Subsequent examples show
that different adversarial Bayes classifiers achieve varying levels of (standard) classification
risk. These examples illustrate that the accuracy-robustness tradeoff could be mitigated by
a careful selection of an adversarial Bayes classifier (see [74] for a further discussion of this
phenomenon). Followup work [24] demonstrates that the concepts presented in this paper
have algorithmic implications— when the data distribution is absolutely continuous with
respect to Lebesgue measure, adversarial training with a convex loss is adversarially consis-
tent iff the adversarial Bayes classifier is unique, according to the new notion of uniqueness
defined in this paper. Hopefully, a better understanding of adversarial Bayes classifiers will

aid the design of algorithms for robust classification.
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3.2 BACKGROUND

3.2.1 ADVERSARIAL BAYES CLASSIFIERS

We study binary classification on the space RY with labels {—1,+1}. The measure P,
describes the probability of data with label —1 occurring in regions of R? while the measure
P, describes the probability of data with label +1 occurring in regions of R?. Most of our
results will assume that Py and P, are absolutely continuous with respect to the Lebesgue
measure u. Vectors in R? will be denoted in boldface (x). Many of the results in this paper
focus on the case d = 1 for which we will use non-bold letters (x). The functions py and p;
will denote the densities of Py, P; respectively. A classifier is represented as the set of points
A with label +1. The classification risk of the set A is then the proportion of incorrectly

classified data:

R(A) = / 1 40P, + / 14dP,. (3.1)

A minimizer of the classification risk is called a Bayes classifier. Analytically finding
the minimal classification risk and Bayes classifiers is a straightforward calculation: Let
P = Py + Py, representing the total probability of a region, and let n be the the Radon-
Nikodym derivative n = dIP;/dP, the conditional probability of the label +1 at a point x.

Thus one can re-write the classification risk is
R() = [ Clo). £x))a2Gx). 3:2)
and the minimum classification risk as inf; R(f) = [ C*(n)dP with
Cn, @) = nlaso + (1 =n)laso,  C(n) = nf C(n, a). (3:3)

The set B = {x: n(x) > 1 —n(x)} is then a Bayes classifier. Note that the set of points
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with 7(x) = 1/2 can be arbitrarily split between B and B®. The Bayes classifier is unique
if this ambiguous set has P-measure zero. Equivalently, the Bayes classifier is unique if
the value of Py(B) or P;(B) are the same for each Bayes classifier. When p, and p; are

continuous, points in the boundary of the Bayes classifier must satisfy

p1(x) = po(x) =0 (3-4)

A central goal of this paper is extending Equation (3.4) and a notion of uniqueness to
adversarial classification.

In the adversarial scenario an adversary tries to perturb the data point x into the opposite
class of a classifier A. We assume that perturbations are in a closed e-ball B(0) in some

norm || - ||. The proportion of incorrectly classified data under an adversarial attack is the

adversarial classification risk,

RE(A) = / S.(1c)dP; + / S.(14)dP, (3.5)

where the S, operation on a function g is defined as

S.(g)(x) = sup g(x +h). (3.6)

[l <e

Under this model, a set A incurs a penalty wherever x € A @ B.(0), and thus we define

the e-expansion of a set A as

A° = A® B.(0).

n order to define the adversarial classification risk, one must show that S.(14) is measurable for mea-
surable A. A full discussion of this issue is delayed to Section 3.5.2.
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Hence the adversarial risk can also be written as

RE(A) = / 140y dPy + / 14 dP,

Prior work shows that there always exists minimizers to Equation (3.5), referred to as ad-
versarial Bayes classifiers [2, 11, 26, 52|, see [26, Theorem 1] for an existence theorem that
matches the setup of this paper. Finding minimizers to Equation (3.5) is difficult because
unlike the standard classification problem, one cannot write the integrand of Equation (3.5)
so that it can be minimized in a pointwise manner. Furthermore, prior research [16] on the

structure of minimizers to R proves:
Lemma 27. If A, Ay are two adversarial Bayes classifiers, then so are A1 UAy and AoNA;.

See Appendix B.1 for a proof.

Next, we focus on classifiers in one dimension as this case is simple to analyze yet still
yields non-trivial behavior. Prior work shows that when Py, Py < p and pg, p; are continuous,
if the adversarial Bayes classifier is sufficiently ‘regular’, one can find necessary conditions
describing the boundary of the adversarial Bayes classifier [64] . Assume that an adversarial
Bayes classifier A can be expressed as a union of disjoint intervals A = Uf‘im(ai, b;), where the
m, M, a;, and b; can be +o00. Notice that one can arbitrarily include/exclude the endpoints
{a;}, {b;} without changing the value of the adversarial risk R¢. If b; —a; > 2¢ and a;,1 —b; >

2¢, the adversarial classification risk can then be expressed as:

a;+e bi+e aj+1te

R(A)=---+ /bi_l_epl(x)dx + /ai_E po(x)dx + / pi(x)de + - (3.7)

b;—e

When the densities py and p; are continuous, differentiating this expression in a; and b;

produces necessary conditions describing the adversarial Bayes classifier:

p1(a; +€) —po(a; —e) =0 (3.8a) po(b;i +€) —pi(by —e) =0 (3.8b)

52



When e = 0, these equations reduce to the condition describing the boundary of the
Bayes classifer in Equation (3.4). Prior work shows that when pg, p; are well-behaved, this

necessary condition holds for sufficiently small e.

Theorem 28 ([64]). Assume that py,p1 are C', the relation po(x) = pi(x) is satisfied at
finitely many points v € suppP, and that at these points, py(xz) # pi(x). Then for suffi-
ciently small €, there exists an adversarial Bayes classifier for which the a; and b; satisfy the

necessary conditions Equation (3.8).

For a proof, see the discussion of Equation (4.1) and Theorem 5.4 in [64]. A central goal
of this paper is producing necessary conditions analogous to Equation (3.8) that hold for all

€.

3.2.2 MINIMAX THEOREMS FOR THE ADVERSARIAL CLASSIFICATION

RISK

We analyze the properties of adversarial Bayes classifiers by expressing the minimal R¢ risk in
a ‘pointwise’ manner analogous to Equation (3.2). The Wasserstein-co metric from optimal
transport and the minimax theorems in [26, 52| are essential tools for expressing R in this
manner.

Informally, the measure Q' is in the Wasserstein-oo ball of radius € around Q if one
can produce the measure Q' by moving points in R? by at most € under the measure Q.
Formally, the W, metric is defined in terms the set of couplings II(Q, Q') between two

positive measures Q, Q’:

I1(Q, Q') = {~ positive measure on R x R? : y(A x RY) = Q(A),7(R? x A) = Q'(A)}.

The Wasserstein-oo distance between two positive finite measures Q' and Q with Q(R?) =
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Q'(RY) is then defined as

Wo(Q,Q)= inf esssupl|x—y].
@Q) = _jut, esssup -]

The W, metric is in fact a metric on the space of measures, as it is a limit of the
Wasserstein-p metrics as p — oo, see [17, 33] for details. We denote the e-ball in the W,

metric around a measure Q by

B>X(Q) ={Q : Q Borel, W (Q,Q) < ¢}

Prior work [52, 63] applies properties of the W, metric to find a dual problem to the

minimization of R: let P, P} be finite Borel measures and define

R(PLP,) = / o (#‘%) AP+ ) (3.9)

where C* is defined by (3.3). Prior results [26, 52] relate this risk to R“.

Theorem 29. Let R be defined by (3.9). Then

inf R(A)= sup R(P,,P)) (3.10)
A Borel I%GBSO (Po)
Py eB(P1)

and furthermore equality is attained for some Borel measurable A and PY, P§ with W (P, Py) <

€ and Wy (P7,Py) <e.

See Theorem 1 of [26] for the statement above. This minimax theorem then implies com-
plementary slackness conditions that characterize optimal A and P, P. See Appendix B.2

for a proof.

Theorem 30. The set A is a minimizer of R¢ and (P, P}) is a mazimizer of R over the
Weo balls around Py and Py iff W (P§, Po) < €, Woo(P},P1) <€, and
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1)
/ S.(140)dP; = / 1,cdP: and / S.(14)dPy = / LdPr (3.1

2) If we define P* = P + P} and n* = dP}/dP*, then

N (y)lac + (1 =n"(y)1a=C"(n"(y)) P*-a.e. (3.12)

3.3 MAIN RESULTS

DEFINITIONS

As discussed in Section 3.2.1, a central goal of this paper is describing the regularity of
adversarial Bayes classifiers and finding necessary conditions that hold for every e in one
dimension.

As an example of non-regularity, consider a data distribution defined by po(z) = 1/5, for
|z| < 1/4 and zero elsewhere; and p(z) = 3/5 for 1 > |z| > 1/4 and zero elsewhere (see
Figure 3.2¢ for a depiction of py and p;). If e = 1/8, an adversarial Bayes classifier is A = R.
However, any subset S of [—1/4 + €,1/4 — €] satisfies R°(SY) = R*(R), and thus S¢ is an
adversarial Bayes classifier as well. (These claims are rigorously justified in Example 46.)
Consequently there are many adversarial Bayes classifiers lacking regularity, but they all
seem to be morally equivalent to the regular set A = R. The notion of equivalence up to

degeneracy encapsulates this behavior.

Definition 31. Two adversarial Bayes classifiers Ay and As are equivalent up to degeneracy
if for any Borel set E with Ay N Ay C E C Ay U Ay, the set E is also an adversarial Bayes
classifier. We say that that the adversarial Bayes classifier is unique up to degeneracy if

any two adversarial Bayes classifiers are equivalent up to degeneracy.

Due to Lemma 27, to verify that an adversarial Bayes classifier is unique up to degeneracy,
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it suffices to show that if A; and A3 are any two adversarial Bayes classifiers with A; C As,
then any set satisfying Ay C E C Aj is an adversarial Bayes classifier as well. In the
example presented above, the non-regular portion of the adversarial Bayes classifier could
only be some subset of D = [—1/4 +¢€,1/4 — €]. The notion of ‘degenerate sets’ formalizes

this behavior.

Definition 32. A set D is degenerate for an adversarial Bayes classifier A if for all Borel

E with A— D C E C AU D, the set E is also an adversarial Bayes classifier.

Equivalently, a set D is degenerate for A if for all disjoint subsets Dy, Dy C D, the set
AUD; — D, is also an adversarial Bayes classifier. In terms of this definition: the adversarial
Bayes classifiers A; and A, are equivalent up to degeneracy iff the set A;AAs is degenerate
for either A; or A,.

This paper first studies properties of these new notions, and then uses the resulting in-
sights to characterize adversarial Bayes classifiers in one dimension. To start, we show that
when P < p, equivalence up to degeneracy is in fact an equivalence relation (Theorem 33)
and furthermore, every adversarial Bayes classifier has a ‘regular’ representative when d = 1
(Theorem 35). The differentiation argument in Section 3.2.1 then produces necessary con-
ditions characterizing regular adversarial Bayes classifiers in one dimension (Theorem 37).
These conditions provide a tool for understanding how the adversarial Bayes classifier de-
pends on €; see Theorem 39 and Propositions 47 to 50. Identifying all adversarial Bayes
classifiers then requires characterizing degenerate sets, and we provide such a criterion un-
der specific assumptions. Lastly, Theorem 34 provides alternative criteria for equivalence up

to degeneracy.

THEOREM STATEMENTS

First, equivalence up to degeneracy is in fact an equivalence relation for many common
distributions.
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Theorem 33. If P < p, then equivalence up to degeneracy is an equivalence relation.

Example 54 shows that the assumption P < p is necessary for this result. Additionally,

uniqueness up to degeneracy generalizes certain notions of uniqueness for the Bayes classifier.
Theorem 34. Assume that P < pu and € > 0. Then the following are equivalent:
A) The adversarial Bayes classifier is unique up to degeneracy

B) Amongst all adversarial Bayes classifiers A, either the value of Py(A) is unique or the

value of Py ((AC)€) is unique

C) There are maximizers Py, 5 of R for which P*(n* = 1/2) = 0, where P* = P+ P} and
* = dPt/dP*

When e = 0, Item B) and Item C) are equivalent notions of uniqueness of the Bayes
classifier (see Section 3.2.1). However, if B; and B, are Bayes classifiers, any set E satisfying
BiNBy C E C ByUB; is always a Bayes classifier. Thus Item A) is not necessarily equivalent
to Items B) and C) when € = 0. When P &« p, Theorem 33 is false although Item B) and
Item C) are still equivalent (see Example 54 and Lemma 144). This equivalence suggests a
different notion of uniqueness for such distributions, see the Section 3.5.1 for more details.

A central result of this paper is that degenerate sets are the only form of non-regularity

possible in the adversarial Bayes classifier in one dimension.

Theorem 35. Assume that d = 1 and Py,Py < pu. Then any adversarial Bayes classifier
is equivalent up to degeneracy to an adversarial Bayes classifier A" = |_|M (@i, b;) with

i=m

bi —a; > 2¢ and a; 11 — b; > 2e.
This result motivates the definition of regularity in one dimension.

Definition 36. We say E C R is a regular set of radius € if one can write both E and E€
as a disjoint union of intervals of length strictly greater than 2e.
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We will drop ‘of radius €’ when clear from the context.
When py, p; are continuous, the necessary conditions Equation (3.8) always hold for a

regular adversarial Bayes classifier.

M

Theorem 37. Let d = 1 and assume that P < p. Let A = \J,_, (a;,b;) be a regular
adversarial Bayes classifier.

If po is continuous at a; — € (resp. b; + €) and py is continuous at a; + € (resp. b; — €),
then a; (resp. b;) must satisfy the first order necessary conditions FEquation (3.8a) (resp.
Equation (3.8b) ). Similarly, if py is differentiable at a;—e (resp. b+¢€) and py is differentiable
at a; + € (resp. b; —€), then a; (resp. b;) must satisfy the second order necessary conditions

Equation (3.13a) (resp. Equation (3.13b)).

pi(a; +¢€) —pylai—€) >0 (3.13a) po(bi +€) —pi(bi —e€) >0 (3.13b)
This theorem provides a method for identifying a representative of every equivalence class

of adversarial Bayes classifiers under equivalence up to degeneracy.

1) Let a, b be the set of points that satisfy the necessary conditions for a;, b; respectively
2) Form all possible open regular sets Uij\im(ai, b;) with a; € a and b; € b.

3) Identify which of these sets would be be equivalent up to degeneracy, if they were

adversarial Bayes classifiers.

4) Compare the risks of all non-equivalent sets from step 2) to identify which are adver-

sarial Bayes classifiers.

One only need to consider open sets in step 2) because the boundary of a regular ad-
versarial Bayes classifier is always a degenerate set when P < u, as noted in Section 3.2.1
(see Lemma 160 for a formal proof). Section 3.4 applies this procedure above to several

example distributions, see Example 41 for a crisp example. This analysis reveals interesting
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patterns. First, boundary points of the adversarial Bayes classifier are frequently within e
of boundary points of the Bayes classifier. Proposition 49 and Proposition 50 prove that
this phenomenon occurs when either P is a uniform distribution on an interval or n € {0, 1},
and Proposition 47 shows that this occurrence can reduce the accuracy-robustness tradeoff.
Second, uniqueness up to degeneracy often fails only for a small number of values of € when
Py(R) # P (R). Understanding both of these occurrences in more detail is an open problem.

Theorem 37 is a tool for identifying a representative of each equivalence class of adver-
sarial Bayes classifiers under equivalence up to degeneracy. Can one characterize all the
members of a specific equivalence class? Answering this question requires understanding

properties of degenerate sets.
Theorem 38. Assume that d =1, P < u, and let A be an adversarial Bayes classifier.
e [f some interval I is degenerate for A and I is contained in supp P, then |I| < 2e.

o Conversely, the connected components of A and AC of length less than or equal to 2e

are contained in a degenerate set.
o A countable union of degenerate sets is degenerate.

e Assume that supp P is an interval and P(n € {0,1}) = 0. If D is a degenerate set for

A, then D must be contained in the degenerate set (suppP€)¢ U JA.

The first two bullets state that within the support of P, degenerate intervals must have
length at most 2¢, and conversely a component of size at most 2¢ must be degenerate. The
last bullet implies that when suppP is an interval and P(n € {0,1}) = 0, the equivalence
class of an adversarial Bayes classifier A consists of all Borel sets that differ from A by a
measurable subset of WU 0A. Specifically, under these conditions, A cannot have a
degenerate interval contained in supp P¢. This result is a helpful tool for identifying sets which

are equivalent up to degeneracy in step 3) of the procedure above. Both of the assumptions
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present in this fourth bullet are necessary— Example 46 presents a counterexample where
supp P is an interval and P(n € {0,1}) > 0 while Example 69 presents a counterexample for
which P(n € {0,1}) = 0 but supp P is not an interval.

Prior work [2, 16] shows that a certain form of regularity for adversarial Bayes classifiers
improves as € increases. Theorem 35 is an expression of this principle: this theorem states
that each adversarial Bayes classifier A is equivalent to a regular set of radius e, and thus
the regularity guarantee improves as € increases. Another form of regularity also improves
as € increases—the number of components of A and AY must decrease for well-behaved

distributions. Let comp(A) € NU {oo} be the number of connected components of a set A.

Theorem 39. Assume that d = 1, P < p, suppP is an interval I, and P(n € {0,1}) =
0. Let ea > € and let Ay, Ay be regular adversarial Bayes classifiers corresponding to
perturbation radiuses €, and €y respectively. Then comp(A; N 1Y) > comp(Ay N I?) and

comp(A§ N I) > comp(AS N I).

Section 3.6.3 actually proves a stronger statement: typically, no component of A;NI* can
contain a connected component of AQC and no component of A? N[ can contain a connected
component of A;. Due to the fourth bullet of Theorem 38, the assumptions of Theorem 39
imply that there is no degenerate interval within int supp P¢, and hence every adversarial
Bayes classifier is regular. When computing adversarial Bayes classifiers, Theorem 39 and
the stronger version in Section 3.6.3 are useful tools in ruling out some of the sets in step 2)
of the procudure above without explicitly computing their risk.

When d > 1, we show:

Theorem 40. Let A be an adversarial Bayes classifier. Then A is equivalent up to degen-
eracy to a classifier A, for which A, = C¢ and a classifier Ay for which A = E€, for some

sets C, E.

Further understanding uniqueness up to degeneracy in higher dimension is an open ques-
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tion.

PAPER OUTLINE

Section 3.4 applies the tools presented above to compute adversarial Bayes classifiers for a
variety of distributions. Subsequently, Section 3.5 presents properties of equivalence up to
degeneracy, including proofs of Theorems 33, 34 and 40. Sections 3.5.2 and 3.5.3 further
study degenerate sets, and these results are later applied in Section 3.6.1 to prove Theo-
rems 35 and 37. Section 3.6.2 further studies degenerate sets in one dimension to prove
Theorem 38. Lastly, Section 3.6.3 proves Theorem 39. Technical proofs and calculations

appear in the appendix, which is organized so that it can be read sequentially.

3.4 EXAMPLES

The examples below find the equivalence classes under equivalence up to degeneracy for
any € > 0. Examples 42 and 46 demonstrate distributions for which the adversarial Bayes
classifier is unique up to degeneracy for all € while Example 45 demonstrates a distribution
for which the adversarial Bayes classifier is not unique up to degeneracy for any € > 0, even
though the Bayes classifier is unique. Example 41 and Example 44 describe intermediate
situations— uniqueness up to degeneracy fails only for a single value of € in Example 44 and
only for sufficiently large € in Example 41. Lastly, Example 46 presents an example with a
degenerate set.

Examples 45 and 46 exhibit situations where different adversarial Bayes classifiers have
varying levels of (standard) classification risk, for all € contained in some interval. For such
distributions, a deliberate selection of the adversarial Bayes classifier would mitigate the
tradeoff between robustness and accuracy.

Furthermore, all the examples below except Example 42 exhibit a curious occurrence—
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Example 41 Example 42 Unequal Weights

p1(x) p1(x) p1(x)
2| = polx) 2 (x 2| = polx)
= Po = Po = Po
c < c
[] (7] []
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> > N >
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(a) (b) (<)

Figure 3.1: (a) Gaussian Mixture with equal means and unequal variances as a in Example 42. (b)
Gaussian Mixture with equal weights, unequal means, and equal variances as in Example 41. (c) Gaussian
Mixture with unequal weights, unequal means, and equal variances.
the boundary of the adversarial Bayes classifier is within € of the boundary of the Bayes
classifier. Propositions 49 and 50 state conditions under which this phenomenon must occur.
Next, Proposition 47 shows that if furthermore the Bayes and adversarial Bayes have the
same number of components, then one can bound the (standard) classification risk of the
adversarial Bayes classifier in terms of the Bayes risk and ¢, suggesting a reduced robustness-
accuracy tradeoff.

The first two examples study Gaussian mixtures: py = (1 — X)gug,00(2), P1 = AGpy 00 (),

where A € (0,1) and g, is the density of a gaussian with mean p and variance o2.

Prior
work [50] calculates a single adversarial Bayes classifier for A = 1/2 and any value of y; and

0;. Below, our goal is to find all adversarial Bayes classifiers.

Example 41 (Gaussian Mixtures— equal variances, equal weights). Consider a gaussian

mixture with po(x) = % . \/21706_(36_“0)2/202, m(z) = % . %\/21706_(’”_”1)2/"2, and (1 > po, as
depicted in Figure 3.1a. The solutions to the first order necessary conditions p;(b — €) —
po(b+¢€) =0 and pi(a+€) —po(a — €) = 0 from Equation (3.8) are

ale) = b(e) = w

However, one can show that b(e) does not satisfy the second order necessary condition Equa-
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tion (3.13b) (see Appendix B.11.1). Thus the candidate sets for the Bayes classifier are R,
(), and (a(€),+00). The fourth bullet of Theorem 38 implies that none of these sets could
be equivalent up to degeneracy. By comparing the adversarial risks of these three sets, one
can show that the set (a(e), +00) is an adversarial Bayes classifier iff ¢ < #55 and R, 0
are adversarial Bayes classifiers iff e > #5# (see Appendix B.11.1 for details). Thus the

: PR : p1—po
adversarial Bayes classifier is unique up to degeneracy only when e < #5522,

When e < #5F2 the set (a(e), +00) is both a Bayes classifier and an adversarial Bayes
classifier, and thus there is no accuracy-robustness tradeoff. In this example, uniqueness up
to degeneracy fails for all sufficiently large €. In contrast, the example below demonstrates

a distribution for which the adversarial Bayes classifier is unique up to degeneracy for all e.

Example 42 (Gaussian Mixtures— equal means). Consider a Gaussian mixture with py(x) =

\/12—;7;‘06_302/ 205 and m(z) = \/%Ole_xQ/ 20 Assume that po has a larger variance than p; but

that the peak of pg is below the peak of p;, or other words, oy > o; but % > 124 gee

g0

Figure 3.1b for a depiction. Calculations similar to Example 41 show that the adversarial

Bayes classifier is unique up to degeneracy for every ¢, and is given by (—b(e), b(€)) where

1, 1 A 1 1 (A=Na1r
€ <J% + U%) + \/O‘(Q)U% 2 (of 0‘3) In Aoo

b(e) = — . (3.14)
0'2 0'2
1 0

The computational details are similar to those of Example 41, and thus are delayed to

Appendix B.11.2.

Unlike Example 41, the Bayes and adversarial Bayes classifiers can differ substantially.
The next three examples are distributions for which supp P is a finite interval. In such

situations, it is often helpful to assume that a;, b; are not near 0 supp P.

Lemma 43. Consider a distribution for which P < p and supp P is an interval. Then every

adversarial Bayes classifier is equivalent up to degeneracy to a regular adversarial Bayes
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classifier A = Uij\im(ai, b;) for which the finite a;, b; are contained in int supp P~¢.
See Appendix B.11.3 for a proof.

Example 44 (Uniqueness fails for a single value of €). Consider a distribution for which

t(142) iffz] <1 (1—2z) if x| <1

1
3
p1 =

0 otherwise 0 otherwise

Do

The only solutions to the first order necessary conditions p;(a + €) — po(a — €¢) = 0 and

po(b+€) — p1(b — €) = 0 within supp P are
1 1
ale) = 5(1 —¢€) and b(e) = 5(1 +¢)

We first consider e small enough so that both of these points lie in int supp P~¢, or in other
words, € < 1/2. Then pf(a(e) —¢) = py(b(e)+¢€) = 1/6 and p/(a(e)+¢) = p}(b(e) —€) = —1/3.
Consequently, the point a(e€) fails to satisfy the second order necessary condition Equa-
tion (3.13a). To identify all adversarial Bayes classifiers under uniqueness up to degeneracy
for € < 1/2, Lemma 43 imply it remains to compare the adversarial risks of (), R, and
(—00,b(€)). Theorem 38 implies that none of these sets could be equivalent up to degener-
acy. The risks of these sets compute to R°(()) = 2/3, R¢(R) = 1/3, and R*((—o0,b(€))) =
2(1+ €)*. Therefore, for all € < 1/2, the set (—oo, b(€)) is an adversarial Bayes classifier iff
€ < 4/3/2 — 1 while R is an adversarial Bayes classifier iff ¢ > \/ﬁ — 1. Theorem 39 then

implies that this last statement holds without the restriction e < 1/2.

Uniqueness up to degeneracy fails for only a single value of € in the example above. In

contrast, uniqueness up to degeneracy fails for all € in the distribution below.

Example 45 (Non-uniqueness for all € > 0). Let p be the uniform density on the interval
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Example 44 Example 45 Example 46

p1(x) 07 p1(x) 07 p1(x)
50 po(x) 50 po(x) 50 po(x)

Probability Density
Probability Density
Probability Density

(a) (b) (c)

Figure 3.2: (a) The distribution of Example 44. (b) The distribution of Example 45. (c) The distribution
of Example 46.

[—1,1] and let

if x <0

Ll

n(r) =
ifz>0

>

Calculations for this example are similar to those in Example 44, so we delay the details to
Appendix B.11.4. For this distribution, the set (y, c0) is an adversarial Bayes classifier for any
y € [—¢, €] iff e < 1/3 and (), R are adversarial Bayes classifiers iff e > 1/3. Theorem 38 implies
that none of these sets could be equivalent up to degeneracy. Therefore, the adversarial
Bayes classifier is not unique up to degeneracy for all ¢ > 0 even though the Bayes classifier

is unique.

Again, the adversarial Bayes classifier (0, 00) is also a Bayes classifier when e < 1/3, and
thus there is no accuracy-robustness tradeoff for this distribution.

A distribution is said to satisfy Massart’s noise condition if |n(x) — 1/2| > ¢ P-a.e. for
some ¢ > 0. Prior work [41] relates this condition to the sample complexity of learning from
a function class. For the example above, Theorem 34 implies that Massart’s noise condition
cannot hold for any maximizer of R even though |n — 1/2| > 1/4 P-a.e.

The next example exhibits a degenerate set that has positive measure under P.
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Example 46 (Example of a degenerate set). Consider a distribution on [—1, 1] with

if |[x] <1/4
po(r) = pi(r) =
0 otherwise 0 otherwise

ol

it 1> |z > 1/4

[

Theorem 37 and Lemma 43 imply that one only need consider a;, b; € {—i T €, % + €} when
identifying a regular representative of each equivalence class of adversarial Bayes classifiers.
By comparing the adversarial risks of the regular sets satisfying this crieterion, one can show
that when e < 1/8, every adversarial Bayes classifier is equivalent up to degeneracy to the
regular set (—oo, —1/4 4 €) U (1/4 — €¢,00) but when e > 1/8 then every adversarial Bayes
classifier is equivalent up to degeneracy to the regular set R (see Appendix B.11.5 for details.)

Next consider € € [1/8,1/4]. If S is an arbitrary subset of [—1/4 + €,1/4 — €|, then
R¢(R) = R¢(SY). Thus the interval [—1/4 + ¢,1/4 — €] is a degenerate set.

When € € [1/8,1/4], the (standard) classification error of R and (—oo, —1/4+4¢)U(1/4—¢)
differ by 2(1 — 4e), which is close to 1/5 for e near 1/8. Thus a careful selection of the
adversarial Bayes classifier can mitigate the accuracy-robustness tradeoff.

The last three propositions in this section specify conditions under which one could hope
that the boundary of the adversarial Bayes classifier would be within € of the boundary of
the Bayes classifier. If in addition the Bayes and adversarial Bayes classifiers have the same
number of components, one can bound the minimal adversarial Bayes error in terms of the

Bayes error rate and e.

Proposition 47. Let B = Y, (ci,d;), A = UM, (as,b;) be Bayes and adversarial Bayes

classifiers respectively. Assume that po, p1 are bounded above by K. Then if |a; — ¢;| < € and

|b; — d;| <€, then R(A) — R(B) < 4eM K.

Thus there will be a minimal robustness-accuracy tradeoff so long as e < 1/MK.
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Proof.

max(a;,c;)

max(b;,d;)
Ip1(2) — pola)|dz + / p1(2) — po(a)|dr < 4eMK

mm(bz,dl)

R(A)-R(B)< Y.

i—1 Y min(a;,c;)
[l

The next proposition stipulates a widely applicable criterion under which there is always
a solution to the necessary conditions pi(a +€) —po(a —€) = 0 and py(b—€) —po(b+¢€) =0

within € of solutions to p;(x) = po(x) (which specifies the boundary of the Bayes classifier).

Proposition 48. Let z be a point with pi(z) — po(z) = 0 and assume that py and p; are
continuous on [z —r,z +r] for some r > 0. Furthermore, assume that one of po, p1 is non-
increasing and the other is non-decreasing on |z — r,z +r]. Then for all e < r/2 there is a
solution to the first order necessary conditions Equation (3.8a) and Equation (3.8b) within

€ of z.

Proof. Without loss of generality, assume that p; is non-increasing and py is non-decreasing

on [z —r,z+r]. The applying the relation p;(z) = po(z), one can conclude that

pi((z =€) +€) = po((z =€) =€) = p1(2) = po(z = 2€) = po(2) = po(z — 2¢) = 0.

An analogous argument shows that p;((2+¢€)+¢€) —po((2+€) —€) < 0. Thus the intermediate
value theorem implies that there is a solution to Equation (3.8a) within € of z. Analogous

reasoning shows that there is a solution to Equation (3.8b) within € of z. O

However, this proposition does not guarantee that the solution to the necessary con-

ditions within € of z must be a boundary point of the adversarial Bayes classifier. To

(z—p1)?
illustrate the utility of this result, consider a gaussian mixture with p;(x) = \/2)‘706_ 27 ,

1y - pg)?

po(z) = =;¢ 2 for which p1(p1) > po(pn) and po(fo) > pi(to), see Figure 3.1¢) for an

illustration. Just as in Example 41, the necessary conditions Equation (3.8) reduce to linear
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equations and so there is at most one a(€) solving Equation (3.8a) and at most one b(e)
solving Equation (3.8b). Thus Proposition 48 implies that the solutions to the first order
necessary conditions Equation (3.8) must be within € of the boundary of the Bayes classifier.

Next, if P is the uniform distribution on an interval, an argument similar to the proof of
Proposition 48 implies that solutions to the first order necessary conditions Equation (3.8)

are within e of solutions to po(z) = p1(2).

Proposition 49. Assume that P is the uniform distribution on an finite interval, p and n are
continuous on supp P, and n(x) = 1/2 only at finitely many points within supp P. Then any
adversarial Bayes classifier is equivalent up to degeneracy to an adversarial Bayes classifier

A= Ui]‘im(ai, b;) for which each a;,b; is at most € from some point z satisfying n(z) = 1/2.

The proof is very similar to that of Proposition 48, see Appendix B.11.6 for details.
Finally, under fairly general conditions, when n € {0, 1}, the boundary of the adversarial

Bayes classifier must be within e of the boundary of the Bayes classifier.

Proposition 50. Assume that supp P is an interval P < p, n € {0,1}, and p is continuous
on suppP and strictly positive. Then any adversarial Bayes classifier is equivalent up to
degeneracy to a reqular adversarial Bayes classifier A = U?im(ai, b;) for which each a;,b; is

at most € from 0{n = 1}.

Again, the proof is very similar to that of Proposition 48, see Appendix B.11.7 for details.

3.5 EQUIVALENCE UP TO DEGENERACY

3.5.1 EQUIVALENCE UP TO DEGENERACY AS AN EQUIVALENCE

RELATION

When P < p, there are several useful characterizations of equivalence up to degeneracy.
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Proposition 51. Let P < p and € > 0. Let (P, PY) be a mazimizer of R and set P* =

P; 4+ Py. Let Ay and Ay be adversarial Bayes classifiers. Then the following are equivalent:
1) The adversarial Bayes classifiers Ay and Ay are equivalent up to degeneracy
2) Bither Sc(14,) = Se(1a,)-Po-a.e. or Se(14¢) = Se(1,0)-Pr-a.e.
3) P*(AAA)) =0

Item 2) states that A, Ay are equivalent up to degeneracy if the ‘attacked’ classifiers
A§, A5 are equal Pp-a.e. Item 3) further states that the adversarial Bayes classifiers A,
Ay are unique up to degeneracy if they are equal under the measure of optimal adversarial
attacks.

Proposition 51 is proved in Appendix B.3.2, and we provide an overview of this argument
below. In this proof, we show that Item 3) is equivalent to Item 2), Item 2) implies Item 1),
and Item 1) implies Item 3). First, the complementary slackness conditions of Theorem 30
implies that Item 2) and Item 3) equivalent, (see the proof of Lemma 144 in Appendix B.3).
To show that Item 2) implies [tem 1), we prove that Item 2) implies S¢(14,04,) = Se(1a;n4,)
Po-a.e. and Sc(1(4,04,)c) = Se(1(a,na,)c Pr-a.e. (Lemma 142). Consequently, any two sets
between A; N Ay and A; U Ay must have the same adversarial risk.

Lastly, to show that Item 1) implies [tem 3), we apply the complementary slackness condi-
tion of Equation (3.11) of Theorem 30 to argue that D = A; A As has P*-measure zero. First,
we show that if D; = int DN Q% Dy = int D N (Q4)¢ and € > 0, then D{ = DS = (int D)*
(see Lemma 145). Thus [ 1(a,na,00,)dPo = [ L(ana,up,)<dPo = [ 1(a,na,0m p)dPo and
the complementary slackness condition Equation (3.11) implies that P§(int D) = 0. Simi-
larly, one can argue that Pj(int D) = 0. The assumption € > 0 is essential for this step of the
proof. Next, to prove P*(D NodD) = 0, we prove the boundary 0A is always a degenerate

set for an adversarial Bayes classifier A when P < p and € > 0. Consequently:
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Lemma 52. Let A be an adversarial Bayes classifier. If P < p and € > 0, then A, A, and

int A are all equivalent up to degeneracy.

See Appendix B.3.1 for a proof. Again, the assumption € > 0 is essential for this step of
the proof.

Proposition 51 has several useful consequences for understanding degenerate sets, which
we explore in Section 3.5.3. Specifically, when P < u, equivalence up to degeneracy is in

fact an equivalence relation.

Proof of Theorem 33. Item 3) of Proposition 51 states that two adversarial Bayes classifiers
Ay, As are equivalent up to degeneracy iff 14, = 14, P*-a.e. Equality of functions P*-a.e.
is an equivalence relation and consequently equivalence up to degeneracy is an equivalence

relation. ]

Furthermore, Proposition 51 implies Theorem 34. Item 2) of Proposition 51 is equivalent
to Item B) of Theorem 34 when the adversarial Bayes classifier is unique up to degeneracy.
In the following discussion, we assume that the adversarial Bayes classifier is unique up to
degeneracy and show that Item 3) of Proposition 51 is equivalent to Item C) of Theorem 34.

First, to show Item C) = Item 3), notice that the complementary slackness condition in

Equation (3.12) implies that

Lypsip <1a<1psip Phae. (3.15)

for any adversarial Bayes classifier A and any maximizer (P, P}) of R. Thus, if P*(n* =
1/2) = 0 then every adversarial Bayes classifier must satisfy 14 = 1,+51/2 P*-a.e. and thus
P*(A;AAs) = 0 for any two adversarial Bayes classifiers A and As.

It remains to show that Item 3) implies Item C). To relate the quantity P*(A;AAs) to
1", we show that there are adversarial Bayes classifiers A;, Ay which match {n* > 1/2} and
{n* > 1/2} P*-a..
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Lemma 53. There erxists P € B> (Py), P; € B>(P,) which mazimize R and adversarial
Bayes classifiers 1211, 1212 for which 151/ = 1, P*-a.e. and 1,>1/0 = 14, P*-a.e., where
P* = P{ + P} and n* = dP}/dP*.

Item B) in conjunction with this lemma implies that 0 = P*(A,AA,) = P*(n* = 1/2) for
the P, P; in Lemma 53. See Appendix B.4 for proofs of Theorem 34 and Lemma 53. The
classifiers A; and A, can be interpreted as minimal and maximal adversarial Bayes clas-
sifiers, in the sense that [ S.(1; )dPy < [Sc(14)dPy < [ Se(14,)dP and [ S(1 Ac )P, >
[ Se(1ac)dP; > [ S( Ac )dPy for any adversarial Bayes classifier A (see Lemma 148 in
Appendix B.4.1).

Theorem 33 is false when PP is not absolutely continuous with respect to pu:

Example 54. Consider a distribution defined by Py = %5_6 and P; = %56. If 0 € A then
Se(1a)(e) =1 and if 0 ¢ A then Sc(14¢)(—€) = 1. In either case, R°(A) > 1/2. The classifier
A = R achieves adversarial classification error 1/2 and therefore the adversarial Bayes risk
is RS = 1/2. The sets R=" and R>? also achieve error 1/2 and thus are also adversarial
Bayes classifiers. These two classifiers are equivalent up to degeneracy because they differ
by one point. Furthermore, the classifiers R and R=" are equivalent up to degeneracy: if
D C R<Y, then S¢(1g=oyp)(—€) = 1 while Sc(1g=o,pyc)(€) = 0 and hence RY(R="UD) = 1/2.
However, if D C (—2¢,0) then R (R”° U D) = 1 and thus R and R>® cannot be equivalent
up to degeneracy.

In short— the classifiers R>Y and R=° are equivalent up to degeneracy, the classifiers R=°
and R are equivalent up to degeneracy, but R>? and R are not equivalent up to degeneracy.

Thus equivalence up to degeneracy cannot be an equivalence relation for this distribution.

However, Item 2) and Item 3) of Proposition 51 are still equivalent when P & pu, as are
Item B) and Item C) of Theorem 34 (see Lemma 144 and Proposition 149 in Appendices B.3.2

and B.4.2 respectively.). As the proof of Theorem 33 relies only on Item 3), one could use
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Item 2) and Item 3) to define a notion of equivalence for adversarial Bayes classifiers even

when P & .

3.5.2 THE UNIVERSAL 0-ALGEBRA, MEASURABILITY, AND

FUNDAMENTAL REGULARITY RESULTS

We introduce another piece of notation to state our regularity results. Define A7 =
((A9)9)C. The set A° represents all points in R? that can be moved into A by a pertur-
bation of size at most € and A~ is the set of of points inside A that cannot be perturbed

outside of A:

A = {x: B.(x) intersects A} (3.16) A7 ={x:B(x) C A} (3.17)
See Appendix B.5 for a proof. Prior works [2, 16] note that applying the €, —e operations

in succession can improve the regularity of an adversarial Bayes classifier and reduce the

adversarial Bayes risk. Specifically:

Lemma 55. For any set A, RS ((A°)¢) < R°(A) and R((A°)~¢) < R(A).

€

See Appendix B.5 for a proof. Thus applying the ¢ and ~¢ operations in succession can
only reduce the adversarial risk of a set. In order to perform these regularizing operations,
one must minimize R® over a og-algebra X that is preserved by the ¢ operation: in other
words, one would wish that A € ¥ implies A€ € >.

To illustrate this concern, [52] demonstrate a Borel set C' for which C¢ is not Borel
measurable. However, prior work shows that if A is Borel, then A€ is measurable with

respect to a larger o-algebra called the universal o-algebra 7 (RY). A set in the universal

o-algebra is referred to as universally measurable. Theorem 29 of [25] states that
Theorem 56. If A is universally measurable, then A€ is as well.
See Appendix B.6 for the definition of the universal o-algebra % (R?).
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Thus, in order to guarantee the existence of minimizers to R with improved regularity
properties, one could minimize R¢ over the universal o-algebra % (R%). However, many prior
papers such as [26, 50, 52] study this minimization problem over the Borel o-algebra. We

show that these two approaches are equivalent:

Theorem 57. Let B(R?) denote the Borel o algebra on Re. Then

inf R(A)= inf R (A)
AcB(R4) Aew (RY)

See Appendix B.6 for a proof. Due to this result, in the remainder of the paper, we treat

the minimization of R¢ over % (R?) and B(R?) as interchangable.

3.5.3 DESCRIBING DEGENERATE SETS AND PROOF OF THEOREM 40

Proposition 51 together with fundamental properties of the € and ~¢ operations imply several
results on degenerate sets.

First, Lemma 27 implies that countable unions and intersections of adversarial Bayes
classifiers are adversarial Bayes classifiers. Item 3) of Proposition 51 then necessitates that

countable unions and intersections preserve equivalence up to degeneracy. As a result:
Lemma 58. Let P < . Then a countable union of degenerate sets is degenerate.

See Appendix B.7.1 for a formal proof.
Next, using the regularizing € and ~¢ operations, we study the relation between uniqueness
up to degeneracy and regular adversarial Bayes classifiers. First notice that (A~¢)¢ is smaller

than A while (A°)™¢ is larger than A:
Lemma 59. Let A be any set. Then (A=) C A C (A°)~-.

Furthermore, one can compare Sc(14) with Sc(1(a-)c) and S¢(14c) with S¢(1(ae)-<):
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Lemma 60. For any set A C RY, the following set relations hold: ((A€)™¢)¢ = A<, ((A°)~¢)~¢ D
A—e} ((A—e)e)—e — A—e) ((A—e)e)e C A€,

See Appendix B.5 for proofs of Lemma 59 and Lemma 60. Lemma 60 then implies:

Corollary 61. Assume P < p and let A be an adversarial Bayes classifier. Then A, (A€)~¢,

and (A=) are all equivalent up to degeneracy.

Proof. Lemma 60 implies that (A=¢)¢, (A°)~ are both adversarial Bayes classifiers satisfying
Se(1a) = Se(Liaey—) and Sc(14c) = Sc(La-eye)c). Therefore, when P < p, Item 2) of

Proposition 51 implies that A, (A7¢)), and (A)~¢ are all equivalent up to degeneracy. [

Theorem 40 is an immediate consequence of Corollary 61. Furthermore, Corollary 61
implies that “small” components of A and A® are degenerate sets. Specifically, one can

show that if C'is a component with C~¢ = (), then C' is contained in (A°)~¢ — (A7)".

Proposition 62. Let A be an adversarial Bayes classifier and let C be a connected component

of A or A® with C=¢ = (. Then C is contained in (A°)~¢ — (A7), and thus the set
U {C . connected components of A or A° with C~¢ = (Z)} (3.18)

s contained in a degenerate set of A.

See Appendix B.7.2 for a proof. This result has a sort of converse: A degenerate set D

must satisfy 1p-« = 1p P-a.e:

Lemma 63. Assume that P < p and let D be a degenerate set for an adversarial Bayes

classifier A. Then P(D~¢) = 0.

See Appendix B.7.3 for a proof.
The adversarial classification risk heavily penalizes the boundary of a classifier. This

observation suggests that if two connected components of a degenerate set are close together,
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then they must actually be included in a larger degenerate set. The ¢ and ~¢ operations

combine to form this enlarging operation.

Lemma 64. Assume that P < p. If D is a degenerate set for an adversarial Bayes classifier

A, then (D)~ is as well.

Proof. Let Ay = AU (D). Then Se(140) > Sc(14¢). We will show that S¢(14,) = Sc(14)
Py-a.e., which will then imply that A, is an adversarial Bayes classifier, and furthermore A

and Aj are equivalent up to degeneracy by Proposition 51. Notice that the set A, satisfies

AC Ay C ((AUD))™

and then Lemma 60 implies that A C (AU (D)) C (AU D). Because D is a degenerate
set, A3 = AU D is an adversarial Bayes classifier and thus Proposition 51 implies that

14¢ = 1aup)e-Po-a.e. which in turn implies 14c = 14¢-Pp-a.e. O

3.6 THE ADVERSARIAL BAYES CLASSIFIER IN ONE
DIMENSION

In this section, we assume that d = 1 and the length of an interval I will be denoted |I|.

Recall that connected subsets of R are either intervals or single point sets.

3.6.1 REGULAR ADVERSARIAL BAYES CLASSIFIERS—PROOF OF

THEOREM 35 AND THEOREM 37

Notice that if I is a connected component of A and A® and |I| < 2¢, then I=¢ = (). Thus
the set of connected components of A or A® of length strictly less than 2¢ is contained in a

degenerate set by Proposition 62.
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However, if |I| = 2¢, then ™€ contains at most one point: if I = [x — €,z + €] then
I7¢ = {z} while I7¢ = 0 if I is not closed. Due to this observation, the set of connected

components of A and A® of length 2¢ is actually degenerate set as well. Thus one can argue:

Lemma 65. Let Py, Py < u, A be an adversarial Bayes classifier. Then there are adversarial

Bayes classifiers Ay, Ay satisfying Ay € A C Ay which are equivalent to A up to degeneracy

and
i M ) i M )
A =@, b), AT =J@E )
i=m j=n

where the intervals (a;,b;), (é;, f;) satisfy bi —a; > 2¢ and f; — & > 2.
This statement is a consequence of Proposition 62 and Lemma 52.

Proof of Lemma 65. Lemma 52 implies that int A and A are both adversarial Bayes classifiers
equivalent to A, and thus Corollary 61 implies that D; = ((int A))~° — ((int A)~¢)¢ and
Dy = ((A)9)=¢ — ((A)~) are degenerate sets. Thus Lemma 52 and Corollary 61 imply that
Ay =int A— Dy, Ay = AU D,, and A are all equivalent up to degeneracy.

The adversarial Bayes classifier int A is an open set, and thus every connected component
of int A is open. Therefore, if I is a connected component of int A of length less than or equal
2¢, then I7¢ = () and Proposition 62 implies that I C D;. Hence every connected component
of A; has length strictly larger than 2e.

As (A)¢ is an open set and flzc = (A)Y — Dy, the same argument implies that every

connected component of 12120 has length strictly larger than 2e. O]

These classifiers A; and A, have “one-sided” regularity— the connected components of
Ay and 215? have length strictly greater than 2e. Next, we use these classifiers with one-sided
regularity to construct a classifier A’ for which both A’ and (A’)® have components larger

than 2e.
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This result suffices to prove Theorem 35, which is detailed in Appendix B.8, and we
discuss an overview of this proof below. As A; C A,, the sets A; and flg are disjoint.

Therefore, one can express R as a disjoint union
R=A UAYUD.

Both A; and flg are a disjoint union of intervals of length greater than 2¢, and thus D =
AIC N A, must be a disjoint union of countably many intervals and isolated points. Notice
that because D is degenerate, the union of A; and an arbitrary measurable portion of D is
an adversarial Bayes classifier as well. To construct a regular adversarial Bayes classifier,
we let D be the connected components of D that are adjacent to some open interval of
Ay. The remaining components of D, Dy = D — Dy, must be adjacent to A,. Therefore, if
A’ = A, U Dy the connected components of A" = A, U Dy and (ANC = Ay U Dy must have
length strictly greater than 2e.

Next, Theorem 37 is a consequence of the fact that the adversarial risk of A = (J, (az, b;)

equals (3.7) when A is regular.

Proof of Theorem 37. Because b; — a; > 2¢ and a; — b;_1 > 2¢, we can treat R°(A) as a
differentiable function of a; on a small open interval around «a; as described by Equation (3.7).
The first order necessary conditions for a minimizer then imply the first relation of (3.8) and
the second order necessary conditions for a minimizer then imply the first relation of (3.13).

The argument for b; is analogous. [

3.6.2 DEGENERATE SETS IN ONE DIMENSION—PROOF OF

THEOREM 38

First, every component of A or A with length less than equal to 2¢ must be degenerate. In

comparison, notice that this statement is strictly stronger than Proposition 62.
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Lemma 66. If a connected component C of A or A has length less than or equal to 2e,

then C' is degenerate.

Proof of Lemma 66. Let A be an adversarial Bayes classifier and let 4; and A, be the two
equivalent adversarial Bayes classifiers of Lemma 65. Because every connected component
of component of A; has length strictly larger than 2e, the connected components of A of
length less than or equal to 2¢ must be included in the degenerate set A — A;. Similarly,
the connected components of A® of length less than or equal to 2¢ are included in /~12C — A%,

which is a degenerate set. O]
Conversely, the length of a degenerate interval contained in supp P is at most 2e.

Corollary 67. Let P < . Assume that I C suppP is a degenerate interval for an adver-

sarial Bayes classifier A. Then |I| < 2e.

Proof. Lemma 63 implies that if I is a degenerate interval then P(I7¢) = 0. Because [ is
an interval, the set 7€ is either empty, a single point, or an interval. As I C suppP and
every interval larger than a single point has positive measure under p, it follows that /7¢ is

at most a single point and thus || < 2e. O
This result is then sufficient to prove the fourth bullet of Theorem 38. To start:

Lemma 68. Let P < p and let A be an adversarial Bayes classifier. If supp P is an interval
and the adversarial Bayes classifier A has a degenerate interval I contained in supp IP¢, then

n(x) € {0,1} on a set of positive measure.

A formal proof is provided in Appendix B.9.1, we sketch the main ideas below. Let I be a
degenerate interval in supp P. One can then find a ‘maximal’ degenerate interval J = [ds, d4]
containing I inside supp P, in the sense that if J’ is a degenerate interval and J C J’ then
J' = J. Corollary 67 implies that |.J| < 2e and Lemma 64 implies that J is of distance strictly
more than 2¢ from any other degenerate set. Thus the intervals [ds — €,d3), (dy, dy + €] do
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Example 69

p1(x)
Po(x)

Probability Density

is BN

X

Figure 3.3: The distribution of Example 69.

not intersect a degenerate subset of A, and these intervals must be entirely contained in A
or A® due to Lemma 66. Thus one can compute the difference RS (AU J) — R¢(A — J) under
four cases: 1) [d3 — €,d3) C A, (dy,dy + €] C A; 2) [ds — €,d3) C A, (dy,dy + €] C AY; 3)
[ds —€,d3) C AC, (dy,dy+ €] C A; 4) [d3 — €,d3) C A, (dy,dy + €] C AC.

In each case, this difference results in [, p1(z)dz = 0 or [, po(z)dz = 0 on some interval
I' C supp P, which implies either n = 1 or = 0, respectively, on a set of positive measure.

Lemma 68 and Lemma 64 together imply the fourth bullet of Theorem 38. The argument
is outlined below, with a formal proof in Appendix B.9.2. If D C int supp P¢ is a degenerate
set which contains two points x < y at most 2¢ apart, then Lemma 64 implies that [x,y] C
(D€)~¢ is degenerate, which would contradict Lemma 68. Thus D N int supp P* must be
comprised of points that are strictly more than 2¢ apart. However, if x € D is more than
2¢ from any point in JA, then one can argue that R°(A — {z}) — R°(A) > 0 if z € A and
R(AU{z})— R(A) > 0if z ¢ A. Thus if D is a degenerate set is disjoint from (supp P¢)C,
then D must be contained in 0A.

Combining previous results then proves Theorem 38— The first bullet of Theorem 38 is
Lemma 66, the second bullet is Corollary 67, the third bullet is Lemma 58, and the fourth
bullet is shown in Appendix B.9.2.

Lemma 68 and the fourth bullet of Theorem 38 are false when supp PP is not an interval.
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Example 69. Consider a probability distribution for which

( (
8 5 3 2 5 3
5 M —ge<az < —3e 5 if —je<az < —ge
1 1 1 4 1 1
25e 1f—§e§x§+§e e lf—§€§$§+§€
pi(r) = po(r) =
2 3 5 8 3 5
5 I +5e <z < +3€ 5 if +e<a <+
0 otherwise 0 otherwise
\ \

See Figure 3.3 for an illustration. Then there are no solutions x to the necessary con-
ditions Equation (3.8) within suppP¢ at which py is continuous at x + ¢ and p; con-
tinuous at x F €. Thus the only possible values for the a;s and b;s within suppP¢ are
{—%, —ge, —%6, —%e, —|—%e, —|—%e, —|—ge, —|—%€}. By comparing the risks of all adversarial Bayes

classifiers with endpoints in this set, one can show that (—oo, —%e) is an adversarial Bayes

classifier. At the same time, R*((—oco,—3¢) US) = R*((—o0, —2¢)) for any subset S of

[—3€ +3€]. Thus [—i¢,+1€] is a degenerate set, but n(z) = 1 on [—3€ +3¢]. See Ap-

pendix B.11.8 for details.

3.6.3 REGULARITY AS € INCREASES—PROOF OF THEOREM 39

Let A; and A, be two regular adversarial Bayes classifiers corresponding to perturbation
radiuses €; and e respectively. Notice that the adversarial classification risk in Equation (3.5)
pays a penalty of 1 within € of each a; and b;. This consideration suggests that as € increases,
there should be fewer transitions between the two classes in the adversarial Bayes classifier.
The key observation is that so long as A; is non-trivial, no connected component of A, should
contain a connected component of A and no connected component of AS should contain a

connected component of A;.

M

We adopt additional notation to formally state this principle. When (J,_ (a;, b;) is a

regular adversarial Bayes classifier and M is finite, define ap;11 to be +00. Similarly, if m is
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finite, define b,,_; as —oo.

Lemma 70. Assume that P <  is a measure for which supp P is an interval I and P(n(z) =
0 0or1)=0. Let Ay =JY (al,b}) and Ay = J2_ (a2, b%) be two reqular adversarial Bayes

i=m J=n\"gr Y

classifiers corresponding to perturbation sizes €; < €.

e If both R and () are adversarial Bayes classifiers for perturbation radius €, then both

R and O are adversarial Bayes classifiers for perturbation radius €.

e Assume that R and () are not both adversarial Bayes classifiers for perturbation radius
€1. Then for each interval (a},b}), the set (a},b}) NI cannot contain any non-empty

(03,a%,,) NI and for each interval (b}, a},,), the set (b},aj, ) N I? cannot contain

any non-empty (a?, b?) NI,

Example 41 demonstrates the the exception to the second bullet— when € > (u; — o) /2,
both R and () are adversarial Bayes classifiers.

To show Lemma 70, notice that if Ay = Uf\il (a?,b?) is a regular adversarial Bayes classifier
and (a3,b7) C 172, then R%(Ay — (a3,b7)) > R?(Ajy) which is equivalent to

Jj 7

2_

bjz-Jreg a?+62 bj €9 b?+62
0< / prdr — / pdx —|—/ podx —|—/ pdx
a?—eg a?—eg a?-‘,—eg b?—eg

b?—eg b?—‘—eg
:/ pl(x)dx—/ po(z)dz

2 2
ST € - —€
]+2 €2

As pg, p1 are non-zero on supp P, replacing €5 with €; in this last expression would increase
the first integral and decrease the second, thereby increasing the entire expression.

Thus, if (a? — €1,b3 + €;) C AY, this calculation would imply that R (A; U (a7, b})) <
R (A7), which would contradict the fact that A; is an adversarial Bayes classifier. Similar
but more technical calculations performed in Appendix B.10 show that if (a?,b?) C AY N4

177

then R'(A; U (a?,0?)) < R*(A;) and so A; cannot be an adversarial Bayes classifier.

971
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3.7 RELATED WORKS

Prior work analyzes several variations of our setup, such as perturbations in open balls
[16], alternative perturbation sets [11], attacks using general Wasserstein p-metrics [63, 64],
minimizing R over Lebesgue measurable sets [52], the multiclass setting [63], and randomized
classifiers [28, 63]. Due to the plethora of attacks present in the literature, this paper
contains proofs of all intermediate results that appear in prior work (such as Lemma 27 from
[16]). Understanding the uniqueness of the adversarial Bayes classifier in these contexts
remains an open question. Establishing a notion of uniqueness for randomized classifiers
in the adversarial context is particularly interesting, as randomized classifiers are essential
in calculating the minimal possible error in adversarial multiclass classification [63] but not
binary classification [28].

Prior work [1, 11, 50] adopts a different method for identifying adversarial Bayes classifiers
for various distributions. To prove a set is an adversarial Bayes classifier, [11] first show a
strong duality result inf, R°(A) = sup, D(fy) for some dual risk D on the set of couplings
between two measures. Subsequently, [1, 11, 50] exhibit a set A and a coupling v for
which the adversarial risk of A matches the dual risk of v, and thus A must minimize
the adversarial classification risk. This approach involves solving the first order necessary
conditions Equation (3.8), and [1] relies on a result of [64] which states that these relations
hold for sufficiently small € under reasonable assumptions. In contrast, this paper uses
equivalence up to degeneracy to show that it suffices to consider sets with enough regularity
for the first order necessary conditions to hold; and the solutions to these conditions typically
reduce the possibilities for the adversarial Bayes classifier to a finite number of sets.

Prior work on regularity [2, 16] prove the existence of adversarial Bayes classifiers with
one sided tangent balls. Theorem 40 states that each equivalence class under equivalence up

to degeneracy has a representative with this type of regularity. Furthermore, results of [1]
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imply that under reasonable assumptions, one can choose adversarial Bayes classifiers A(e)
for which comp(A(e)) + comp(A(€)?) is always decreasing in €. Specifically, they show that
for increasing €, the only possible discontinuous changes in A(€) are merged components,
deleted components, or a endpoint of a component changing discontinuously in e. This

statement does not imply Lemma 70, and Lemma 70 does not imply this result of [1].

3.8 (CONCLUSION

We defined a new notion of uniqueness for the adversarial Bayes classifier, which we call
uniqueness up to degeneracy. This concept generalizes uniqueness for the Bayes classifier.
The concept of uniqueness up to degeneracy produces a method for calculating the adversarial
Bayes classifier for a reasonable family of distributions in one dimension, and assists in
understanding their regularity properties. We hope that the theoretical insights in this

paper will assist in the development of algorithms for robust learning.
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4 ADVERSARIAL CONSISTENCY

4.1 INTRODUCTION

A central issue in the study of neural nets is their susceptibility to adversarial perturbations—
perturbations imperceptible to the human eye can cause a neural net to misclassify an image
[14, 58]. The same phenomenon appears in other types of data such as speech and text.
As deep nets are used in applications such as self-driving cars and medical imaging [37,
47], training classifiers robust to adversarial perturbations is a central question in machine
learning.

The foundational theory of surrogates for classication in well understood. In the stan-
dard classification setting, one seeks to minimize the classification risk— the proportion of
incorrectly classified data. Since minimizing the classification risk is typically computation-
ally intractable [9], a common approach is to instead minimize a better-behaved alternative
called the surrogate risk. However, one must verify that classifiers with low surrogate risk
also achieve low classification risk. If for every data distribution, a sequence of functions
minimizing the surrogate also minimizes the classification risk, the surrogate risk is called
consistent. Many classic papers study the consistency of surrogate risks in the standard
classification setting [8, 38, 43, 49, 57].

Unlike the standard case, however, little is known about the consistency of surrogate

risks in the context of adversarial training, which involves risks that compute the supremum
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of a surrogate loss function over an e-ball. Though this question has been partially studied
in the literature [3, 4, 42|, a general theory is lacking. Existing results reveal, however, that
the situation is substantially different from the standard case: for instance, [42] show that
no convexr surrogate can be adversarially consistent. To our knowledge, no adversarially
consistent risks are known.

In this work, we give a complete characterization of adversarial consistency for surrogate
losses.

Our Contributions:

e In Section 4.4 we give a surprisingly simple necessary and sufficient condition for ad-

versarial consistency:

Informal Theorem. Under reasonable assumptions on the surrogate loss ¢, the supremum-

based ¢-risk is adversarially consistent if and only if inf, ¢(a) /2 + ¢p(—a)) /2 < ¢(0).

In particular, this result proves consistency for any loss function that is not midpoint

convex at the origin.

e In Section 4.5, we specialize to the case of the p-margin loss, where we obtain a quan-
titative proof of adversarial consistency by explicitly bounding the excess adversarial

risk.

To the best of the authors’ knowledge, this paper is the first to prove that a loss-based
learning procedure is consistent for a wide range of distributions in the adversarial setting. As
mentioned above, the p-margin loss ¢,(a) = min(1, max(1 — a/p,0)) satisfies the conditions
of Informal Theorem above, as does the shifted sigmoid loss ¢,(a) = 1/(1 + exp(a — 7))
with 7 > 0, which confirms a conjecture of Meunier et al. [42]. By contrast, all convex losses
satisfy inf, ¢(a)/2 + ¢(—a)/2 = ¢(0), and are therefore not adversarially consistent.

In addition to consistency, one would hope to obtain a quantitative comparison between
the adversarial surrogate risk and the adversarial classification risk. Our bound in Section 4.5
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shows that the excess error of the adversarial p-margin loss is a linear upper bound on the
adversarial classification error, which implies that minimizing the adversarial p-margin loss
is an effective procedure for minimizing the adversarial classification error. Extending the

bound in Section 4.5 to further losses remains an open question.

4.2 RELATED WORKS

Many previous works have studied the consistency of surrogate risks [8, 38, 43, 49, 57]. The
classic papers by [8, 38, 75] explore the consistency of surrogate risks over all measurable
functions. The works [5, 43, 49] study H-consistency, which is consistency restricted to a
smaller set of functions. Steinwart [57] generalizes some of these results into a framework
referred to as calibration. Awasthi et al. [3, 4], Bao, Scott, and Sugiyama [6], and Meu-
nier et al. [42] then use this framework to analyze the calibration of adversarial surrogate
losses. Furthermore Meunier et al. [42] relate calibration to consistency for adversarial losses
in certain cases — they show that no convex loss is adversarially consistent. They also
conjecture that a class of surrogate losses called the odd shifted losses are adversarially con-
sistent. Meunier et al. [42] also show that in a restricted setting, surrogates are consistent
for ‘optimal attacks’. The proof of our result formalizes this intuition. Simultaneous work
[40] shows that the p-margin loss is adversarially H-consistent for typical function classes.
Lastly, Bhattacharjee and Chaudhuri [12, 13] use a different set of techniques to study the
consistency of non-parametric methods in adversarial scenarios.

Our results rely on recent works establishing the properties of minimizers to surrogate
adversarial risks. [2, 16, 52| all proved the existence of minimizers to the adversarial risk
and [52] proved a minimax theorem for the zero-one loss. Building on the work of [52], [25]
later proved similar existence and minimax statements for arbitrary surrogate losses. Trillos,

Jacobs, and Kim [62, 63] extend some of these results to the multiclass case. Lastly, [64]
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study further properties of the minimizers to the adversarial classification loss.

4.3 PROBLEM SETUP

This section contains the necessary background for our results. Section 4.3.1 gives precise
definitions for the main concepts, and Section 4.3.2 describes the minimax theorems that are

at the heart of our proof.

4.3.1 SURROGATE RISKS

This paper studies binary classification on R¢. Explicitly, labels are {—1,+1} and the data
is distributed according to a distribution D on the set R? x {—1,+1}. The measures Py,
Py define the relative probabilities of finding points with a given label in a region of R

Formally, define measures on R by
Pu(A4) = D(A x {+1}), Po(4) = D(A x {~1}).
The classification risk R(f) is then the probability of misclassifying a point under D:

R(f) :/1f(X)S0dP1+/1f(x)>0dP0~ (4.1)

The surrogate to R is

Ro(h) = [ otz + [ o(-pap,. (42)

A classifier can be obtained by minimizing either R or R, over the set of all measurable
functions. A point x is then classified according to sign f. There are many possible choices

for p—typically one chooses a loss that is easy to optimize. In this paper, we assume that
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Assumption 2. ¢ is non-increasing, non-negative, continuous, and lim, . ¢(a) = 0.

Most surrogate losses in machine learning satisfy this assumption. Learning algorithms
typically optimize the risk in (4.2) using an iterative procedure, which produces a sequence
of functions that minimizes R,. We call Ry a consistent risk and ¢ a consistent loss if
for all distributions, every minimizing sequence of Ry is also a minimizing sequence of R.!
Alternatively, the risks R, R4 can be expressed in terms of the quantities P = Py 4+ P, and
n = dP;/dP. For all n € [0, 1], define

Cn, @) = nla<o + (1 =n)laso,  C7(n) = nfC(n, a), (4.3)
Co(n, @) = ng(a) + (L =n)¢(=a),  C4n) = inf Cy(n, a) (4.4)

For more on the definitions of R, Ry, C,Cy, see [8] or Sections 3.1 and 3.2 of [25]. Using
these definitions, R(f) = [ C(n(x), f(x))dP and

Ro(h) = [ Colttx). 1) (45)

This alternative view of the risks & and R, provides a ‘pointwise’ criterion for consistency—
if the function f(x) minimizes Cy(n(x), -) at each point, then it also minimizes R,. However,
minimizers to Cyg(n,-) over R do not always exist— consider for instance n = 1 for the ex-
ponential loss ¢(a) = e~®. In general, for minimizers of Cy(n,-) to exist, one must work
over the extended real numbers R = R U {—o00, +00}. The following proposition proved in
Appendix C.1 implies that ‘pointwise’ considerations also extends to minimizing sequences

of functions.

Proposition 71. The following are equivalent:

In the context of standard (non-adversarial) learning, the concept we defined as consistency is often
referred to as calibration, see for instance [8, 57]. We opt for the term ‘consistency’ as the prior works [3, 4,
42] use calibration to refer to a different but related concept in the adversarial setting.
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1) ¢ is consistent
2) Every minimizing sequence of Cy(n,-) is also a minimizing sequence of C(n,-)
3) Every R-valued minimizer of Ry is a minimizer of R

This result is well-known in prior literature; in particular the equivalence between 2)
and 3) is closely related to the equivalence between calibration and consistency in the non-
adversarial setting [57]. Most importantly, the equivalence between 1) and 3) reduces study-
ing minimizing sequences of functionals to studying minimizers of functions. We will show
that the equivalence between 1) and 2) has an analog in the adversarial scenario, but the
equivalence between 1) and 3) does not.

In the adversarial classification setting, every x-value is perturbed by a malicious adver-
sary before undergoing classification by f. We assume that these perturbations are bounded
by € in some norm || - || and furthermore, the adversary knows both our classifier f and
the true label of the point x. In other words, f misclassifies (x,y) when there is a point
x' € m for which 1f<o = 1 for y = +1 and 1¢x)>o = 1 for y = —1. Conveniently, this

criterion can be expressed in terms of suprema. For any function g, we define

Sc(g9)(x) = sup g(x+h)

[hl<e

A point x with label +1 is misclassified when S, (17<0)(x) = 1 and a point x with label
—1 is misclassified when S(1¢-¢)(x) = 1. Hence the expected fraction of errors under the

adversarial attack is

R(f) = / S.(1j<0)dPy + / S.(1720)dP, (4.6)

which is called the adversarial classification risk ?. Again, optimizing the empirical version

2Defining this integral requires some care because for a Borel function g, S.(g) may not be measurable;
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of (4.6) is computationally intractable so instead one minimizes a surrogate of the form

R(f) = / Si(¢ 0 f)dB, + / Su(¢ 0 — )P, (4.7)

Due to the supremum in this expression, we refer to such a risk as a supremum-based surro-

gate. We define adversarial consistency as

Definition 72. The risk R, is adversarially consistent if for every data distribution, every
sequence f,, which minimizes Ry over all Borel measurable functions also minimizes R°. We

say that the loss ¢ is adversarially consistent if the risk Rf, is adversarially consistent.

Many convex and non-convex losses are consistent in standard classification [8, 38, 53, 57,
75]. By contrast, adversarial consistency often fails. For instance, Meunier et al. [42] show
that convex losses are not adversarially consistent. Furthermore, their example shows that
the equivalence between 1) and 3) in Proposition 71 does not hold in the adversarial context.
Thus, to understand adversarial consistency, it does not suffice to compare minimizers of Rj

and R°. To illustrate this distinction, we show the following result, adapted from [42].

Proposition 73. Assume that inf, ¢(a)/2 + ¢(—a)/2 = ¢(0). Then ¢ is not adversarially
consistent.

Proof. Let Py = Py be the the uniform distribution on the ball Bg(0) and let ¢ = 2R. Let ¢ be
a loss function for which inf, ¢(a)/2+¢(—a)/2 = C}(1/2) = $(0). Notice that inf; R°(f) >
inf; R(f) and infy R§(f) > inf; Rg(f). Since Py = Py, the optimal non-adversarial risk is
inf; R(f) = 1/2. Moreover, as Cj(1/2) = ¢(0), the optimal non-adversarial surrogate risk
is infy Ry(f) = C;(1/2) = ¢#(0). Thus, for the function f* =0, R(f*) = inf; R(f) = 1/2
and Rg(f*) = inf; Ry(f) = #(0). Therefore f* minimizes both Rg and R¢. Now consider

see Section 3.3 and Appendix A of [25] for details.
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the sequence of functions

x=0

S |-

fn(x> -
-1 x#0

Because ¢ = 2R, every point in the support of the distribution can be perturbed to every
other point. Thus Se(¢ o f,)(x) = ¢(—1/n) and S (¢ o —f,)(x) = ¢(—1/n). However,
Se(1y<0) = 1 and Sc(1y50) = 1. Therefore, Ry(f,) = ¢(—1/n) while R*(f,) = 1 for all n.
As ¢ is continuous, lim,, o R5(fn) = ¢(0). Thus f, is a minimizing sequence of R but not

of R, so ¢ is not adversarially consistent. O

This example shows that if Cj(1/2) = ¢(0), then ¢ is not adversarially consistent. The
main result of this paper is that this is the only obstruction to adversarial consistency: ¢ is
adversarially consistent if and only if C7(1/2) < ¢(0).

We begin by showing that this condition suffices for consistency in the non-adversarial
setting. Surprisingly, despite the wealth of work on this topic, this condition does not appear

to be known.
Proposition 74. If C;(1/2) < ¢(0), then ¢ is consistent.

See Appendix C.3 for a proof.

Again, some losses that satisfy this property are the p-margin loss ¢,(a) = min(1, max(1—
a/p,0)) and the the shifted sigmoid loss proposed by Meunier et al. [42], ¢(a) = 1/(1 +
exp(a — 7)), 7 > 0. (In fact, one can show that the class of shifted odd losses proposed by
Meunier et al. [42] satisfy C(1/2) < ¢(0).)

Notice that all convex losses satisfy C%(1/2) = ¢(0):

C5(1/2) = inf 6(a) + 36(~a) > 6(0)

The opposite inequality follows from the observation that C%(1/2) < Cy(1/2,0) = ¢(0). In
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contrast, recall that a convex loss ¢ with ¢/(0) < 0 is consistent [8].
As conjectured by prior work [6, 42], the fundamental reason losses with C(1/2) < ¢(0)
are adversarially consistent is that minimizers of Cy(n, ) are uniformly bounded away from

0 for all n:

Lemma 75. The loss ¢ satisfies C5(1/2) < ¢(0) iff there is an a > 0 for which any minimizer

a* of Cy(n,-) satisfies |a| > a.

See C.3 for a proof. Concretely, one can show that for the p-margin loss ¢,, a minimizer
a* of Cg,(n,-) must satisfy |a*| > p. Similarly, a minimizer o* of Cy, (7,-) of the shifted
sigmoid loss ¢, = 1/(1+exp(a— 7)), 7 > 0 is always either —oo or +00. In 4.4, we use this
property to show that minimizing sequences of R must be uniformly bounded away from

zero, thus ruling out the counterexample presented in Proposition 73.

4.3.2 MINIMAX THEOREMS FOR ADVERSARIAL RISKS

We study the consistency of ¢ by by comparing minimizing sequences of R with those of
R¢. In the next section, in order to compare these minimizing sequences, we will attempt
to re-write the adversarial loss in a ‘pointwise’ manner similar to Proposition 71. In order
to achieve this representation of the adversarial loss, we apply minimax and complementary
slackness theorems from [25, 52].

Before presenting these results, we introduce the oco-Wasserstein metric from optimal
transport. For two finite probability measures Q, Q' satisfying Q(R?) = Q'(R%), let I1(Q, Q')

be the set of couplings between Q and Q':

I1(Q, Q") = {v : measure on R? x R? with (A4 x RY) = Q(A),7(R? x A) = Q'(A)}
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The distance between Q' and Q in the Wasserstein oo-metric W, is defined as

We(Q,Q)= inf esssupl|x—y].
@Q) = _jut , esssup -]

The W, distance is in fact a metric on the space of measures. We denote the oco-Wasserstein

ball around a measure Q by

BX(Q) ={Q": Q' Borel, W, (Q,Q) < ¢}

Informally, the measure Q' is in B>(Q) if perturbing points by at most € under the measure
Q can produce QQ'. As a result, Wasserstein co-balls are fairly useful for modeling adversarial

attacks. Specifically, one can show:

Lemma 76. For any function g and measures Q';, Q with Wo(Q',Q) < €, the inequality
J Se(9)dQ > [ gdQ' holds.

See Appendix C.4 for a proof.
Minimax theorems from prior work use this framework to introduce dual problems to the

adversarial classification risks (4.6) and (4.7). Let P{, P} be finite Borel measures and define

R(P,,P)) = /C* (ﬁ%) d(Py + P)) (4.8)

where C* is defined by (4.3). The next theorem states that maximizing R over Wy, balls is

in fact a dual problem to minimizing R°.

Theorem 77. Let R be defined by (4.8).

inf RY(f)= wsup R(P,,P) (4.9)
f Borel, Py B2 (Po)
Tvatue P} €8 (P1)
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and furthermore equality is attained for some Borel measumblef and Py, Py with WOO(IEDO, Py) <

€ and WOO(I@H,]PI) <e.

The first to show such a theorem was Pydi and Jog [52]. In comparison to their Theorem
8, Theorem 77 removes the assumption that Py, P; are absolutely continuous with respect to
Lebesgue measure and shows that the minimizer f is in fact Borel. We prove this theorem
in Appendix C.5. Frank and Niles-Weed [25] prove a similar statement for the surrogate risk
Rg. This time, the dual objective is

D, / / * d]P)/ / /
R(ﬁ(]P)Oa]P)l) - /C¢ (M) d(]P)O +]P)1> (410)

with C} defined by (4.4).

Theorem 78. Assume that Assumption 2 holds, and define Ry by (4.10). Then

inf RG(f) = sup  Ry(l, ) .
f Borel, PoeBee (o)
f R-valued P} €BX(P1)

and furthermore equality in the dual problem is attained for some Py, P§ with W (P, Py) < €

and Wy (Pt,Py) <e.

Frank and Niles-Weed [25] proved this statement in Theorem 6 but with the infimum
taken over R-valued functions. To extend the result to R-valued functions as in Theorem 78,

we show that inf; 5o  vaed 26 (f) = Inff Borel, f Rvaluea 125(f) in Appendix C.2.

4.4 ADVERSARIALLY CONSISTENT LOSSES

This section contains our main results on adversarial consistency. In light of Proposition 73,

our main task is to show that a loss satisfying C7(1/2) < ¢(0) is adversarially consistent.
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At a high level, we will show that every minimizing sequence of Rj must also minimize
Re. However, directly analyzing minimizing sequences {f,} of Rj and R° is challenging
due to the supremums in the definitions of the adversarial risks. We therefore develop alter-
nate characterizations of minimizing sequences to both functionals, based on complementary
slackness conditions derived from the convex duality results of Section 3.2. However, unlike
standard complementary slackness conditions well known from convex optimization, these

theorems allow us to characterize minimizing sequences as well as minimizers.

4.4.1 APPROXIMATE COMPLEMENTARY SLACKNESS

We first state this slackness result for the surrogate case, due to Frank and Niles-Weed [25

Lemmas 16 and 26| and Theorem 78.

Proposition 79. Let (P}, %) be any mazimizers of Ry over BX(P;). Define P* = Pj + P},

n* = dPi/dP*. If f, is a minimizing sequence for Rg, then the following hold:

n—oo

lim [ Cy(n*, fr)dP* = /C:;(n*)d]P’*. (4.12)

lim [ Sc(¢ofn) dIP’l—/(b fndP] =0, hm /S ¢o—fn d]P’O—/éo fndPy =0 (4.13)

n—oo

Proof. Let R, be the minimal value of Rj and choose a § > 0. Then for sufficiently large
N, n > N implies that R§(f,) < R, + 6. Lemma 76 and the definition of C} in (4.4)

further imply that

o402 [ 00+ [ So-f)iy > [opdei+ [ ook > Ry, (410

As RS, = [ Cj(n*)dP*, this relation immediately implies (4.12).
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Next, Lemma 76 again implies that

/Se(qbofn)dIP’l > /gbofndIP”{ and /Se(gbo—fn)dIP’O > /gbo—fndIF’(’; (4.15)

while (4.14) implies that

R;*—/gbofndlp’“{%—/qbo—fndpg <0.

Therefore, subtracting [ ¢ o f,,dP; + [ ¢ o — f,,dPf from (4.14) results in

5> (/ S.(¢ o f,)dP, —/¢ofndIP’{>+(/S€(¢o—fn)dPo —/gbo—fndIP’E‘;) > 0. (4.16)

Again, (4.15) implies that the quantities on parentheses are both positive which implies
(4.13).
m

Proposition 79 shows that minimizing sequences of Rj satisfy two properties: 1) The
sequence { f,,} must minimize the standard ¢-risk R, with measures P§, P} in place of Py, Py,
2) At the limit, the measures P, P are best adversarial attacks on ¢o f,,, po—f,,. In fact, one
can show that {f,} is a minimizing sequence of R, if and only if it satisfies these properties.
Crucially, a very similar characterization holds for minimizers of the adversarial classification

loss. We state and prove the ‘only if” direction of this characterization in Proposition 80.

Proposition 80. Let f,, be a sequence and let P§, P} be measures in BX(P;). Define P* =
P + Py, n* = dPy/dP*. If the following two conditions hold:

lim [ C(y, f,)dP* = / C* (n*)dP* (4.17)

n—oo

n—oo

lim Sg(lfn<0)d]P)1 - / 1fn<0d]P)>{ = 0, lim Se(lfn>0)d]P)0 - / 1fn>0d]P)8 = 0, (418)
- - n—00
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then f, is a minimizing sequence of R°.

Proof. Equation 4.17 implies that the limit lim, . C(n*, f,)dP* exists. Thus (4.17) and

(4.18) imply that

lim R€<fn) = lim Se(lfngo)dpl +/SE<1fn>0)dP0 = h_)m 1fn§0d]P>T+/1fn>0d]P>8

n—oo n—oo

= lim [ C(n", f,)dP* = /C*(n*)dP* = R(P;,P}).
Therefore, Strong duality (Theorem 77) then implies that

lim R(f,) < sup R(P;,P)) = inf R(f)

n— 00 / Borel
PoeBE (Po) !
P, B> (P,) R-valued
and therefore, f,, is a minimizing sequence. ]
9

We end this section by comparing the different criteria for consistency presented in Propo-
sition 71 with Propositions 79 and 80. Together, Propositions 79 and 80 will allow us to
compare minimizing sequences of Rj to those of R by showing that any sequence satis-
fying (4.12)—(4.13) must also satisfy (4.17)—(4.18). This statement is the analog to 2) of
Proposition 71. Indeed, because Cy(n*, f,) > Cj(n*), (4.12) is actually equivalent to to
Cs(n*, fn) — Cj(n*) in L'(P*). However, the extra criterion (4.18) implies an additional
constraint on the structure of the minimizing sequence. This additional constraint is the
reason 3) of Proposition 71 is false in the adversarial setting. In the restricted situation
where Ry = R, Meunier et al. [42] show that (4.12) implies (4.17) (Proposition 4.2). How-

ever, this observation does not suffice to conclude consistency.

97



4.4.2 ADVERSARIAL CONSISTENCY

We are now in a position to prove consistency. Before presenting the full proof, we pause to
discuss the overall strategy. Consistency will follow from three considerations. First, every
minimizing sequence of R, satisfies conditions (4.12) and (4.13). Second, conditions (4.12)
and (4.13) imply the very similar conditions (4.17) and (4.18). Finally, any function sequence
satisfying (4.17) and (4.18) must be a minimizing sequence to R°. The first and last steps
are the content of Propositions 79 and 80, so it remains to justify the middle step.

Verifying that (4.12) implies (4.17) is straightforward. The relation (4.12) actually states
that f,, minimizes the standard surrogate risk with respect to the distribution given by P§,
Pi. Therefore (4.12) implies (4.17) so long as ¢ is consistent.

The main difficulty is verifying (4.18), due to the discontinuity of 1,<¢, 1a>0 at 0. Due
to this discontinuity, one cannot directly argue that (4.13) implies (4.18): to simplify the
discussion, assume that ¢ is strictly decreasing on a neighborhood of the origin, in which
case loco = lga)>e(0) and lo>0 = lg(—a)>¢(0)- Recall that according to (4.13), in the limit
n — oo, P§, Pt are the strongest attack in B2 (Py) x B>(P;), or informally, S.(¢ o f,)(x)
approaches ¢(f,(x')) for an optimal perturbation x’ w.h.p., with a similar condition for
¢ o — fn. However, due to the discontinuity of 14_a)>¢0) at ¢(0), if f,,(x') = 0 as n — oo,
this relation does not imply that 1g (go—f.)x)>e(0) approaches 1go_y, (x/)>0-

Lemma 75 says that if C3(1/2) < ¢(0), minimizers of Cy(n,-) are uniformly bounded
away from 0. This fact suggests that minimizing sequences will also be bounded away from

the origin, which will allow us to avoid the discontinuity there. Concretely, we show:

Lemma 81. Let C}(1/2) < ¢(0). Then there is a § > 0 and a ¢ > 0 with ¢(c) < ¢(0) for
which o € [—c, c] implies Cy(n, ) > CF(n) + 0, uniformly in 1. Furthermore, for this value

of ¢, if a > c then ¢(a) < ¢(c).

We prove this lemma in Appendix C.3. Because Cy(n*, fn) = Cj(n*) in L'(P*), Lemma 81
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implies that
lim P*(f, € [—¢,¢]) = 0. (4.19)

n—oo

This relation is the key fact that allows us to show that (4.13) implies (4.18). The
condition C}(1/2) < ¢(0) is essential for this step of the argument.
Lastly, Lemma 76 implies that [ S¢(1z,50)dP; > [ 1y, 50dP; and thus to validate (4.18),

it suffices to verify the opposite inequality in the limit n — oo.

Lemma 82. Let f, be a sequence of functions and let Py € BX(Py), P; € BX(Py). The
equation

limsup/SE(lfngo)dIP)l < lim inf 1fn§0dPI (420)

n—o00 n—oo

implies the first relation of (4.18) and

limsup/Se(lfn>0)dIP’0 < liminf/lfn>0dIP’3 (4.21)

n—o00 n—00

implies the second relation of (4.18).

See Appendix C.6 for a proof. These considerations suffice to prove the main result of

this paper:
Theorem 83. The loss ¢ is adversarially consistent if and only if C3(1/2) < ¢(0).

Proof. The ‘only if” portion of the statement is Proposition 73.

To show the ‘if’ statement, recall the standard analysis fact: lim,_,. a, = a iff for all
subsequences {ay,} of {a,}, there is a further subsequence an;, for which limy o an, = a.
This result implies that to prove R is consistent, it suffices to show that every minimizing
sequence f, of Ry has a subsequence f,; that minimizes R*.

Let f, be a minimizing sequence of Rj. For convenience, pick a subsequence f,; for
which the limits lim;_,, [ Se(lfnj <0)dPo, lim;_,o [ Se(lfnj >0)dP; both exist. For notational
clarity, we drop the ; subscript and denote this sequence as f,.
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By Proposition 79, the equations (4.12) and (4.13) hold. We will argue that f,, is in fact
a minimizing sequence of R® by verifying the conditions of Proposition 80.

First, the relation (4.12) states that the sequence f,, minimizes the standard ¢-risk for the
distribution given by P§ and Pj. As the loss ¢ is consistent by Proposition 74, the sequence
fn» must minimize the standard classification risk for the distribution P§, P;. This statement
implies (4.17). Next we will argue that (4.18) holds.

Let ¢,d be as in Lemma 81. Because Cy(n*, fn) > Cj(n*), (4.12) implies that Cy(n*, f,)
converges to Cj;(n*) in L'. However, L' convergence implies convergence in measure (see for
instance Proposition 2.29 of [22]), and therefore lim, o P*(Cy(n*, fn) > C3(n*) +6) = 0.
Lemma 81 then implies that for i = 0,1

lim P} (f, € [—¢,c]) = 0. (4.22)

n—oo

Next, because ¢ is non-increasing, f < 0 implies ¢(f) > ¢(0) and thus 15<o < 1gor>e(0)-

Furthermore, as the function o — 1,>¢ is monotone and upper semi-continuous,

/ Se(1y,<0)dPy < / Se(Lpof,>¢(0))dP1 < / Ls. (g0 fn)=0(0)dP1- (4.23)

Let ~; be a coupling between P; and P for which ess sup, |x—y|| < e. Then the measure

X,Y)~i |
7 1s supported on A, = {(x,¥): ||x — y|| < €}. Furthermore, as S.(¢ o f,)(x) > ¢ o f(x')
everywhere on A, the relation S.(¢ o f,,)(x) > ¢ o f,(x) actually holds ~;-a.e. Therefore,
(4.13) actually implies that S.(¢ o f,)(x) — ¢ o f,(x') converges in ~;-measure to 0. In

particular, since ¢(c) < @(0), limy, o0 Y1 (Se(¢d 0 f,)(x) — A(fu(x)) = #(0) — ¢(c)) = 0 and

100



thus lim,, oo 71 (Se(¢ 0 fr)(x) > d(0) N @ o fr(x) < ¢(c)) = 0. Therefore,

lim inf P1(S.(6 0 £,)(%) > 6(0)) = lminf 3 (Sc(6 0 £,)(x) 2 6(0) N &0 fu(x) > 6(c))

< liminf (60 fu(x) 2 6(¢) = minf Pi(6 0 fulX) = 6(c))

This calculation implies

lim inf / 1S€(¢ofn)(x)>¢(0)dP1 S lim inf/ 1¢ofn(x’)>¢(c)dp>{ S lim inf/ 1fn<ch>{ (4.24)
- n—o0 - n—oo -

n—oo

The last inequality follows because Lemma 81 states that o > ¢ implies ¢(a) < ¢(c) and

therefore 1407, >¢(c) < 1j,<c. Equation 4.22 then implies

liminf/1¢ofn>¢(o)dIP”{ < liminf/lfngchf :hminf/lfng_chP’f. (4.25)

n—oo n—oo n—oQ

Recall that the sequence f,, was chosen so that the limit lim,, .~ [ Se(1f,<0)dP; exists. Com-

bining this fact with (4.23), (4.24), and (4.25) results in

limsup/SE(lfngo)dIP’I < liminf/lfng_cdﬂ”f < liminf/lfngodIP’T (4.26)

n—oo n—oo n—oo

The first relation of (4.18) then follows from (4.26) together with Lemma 82.
A similar argument implies the second relation of (4.18). Because 1559 = 1_5-0 < 1_<,

the same chain of inequalities as (4.23), (4.24), and (4.25) implies that

limsup/SE(lfn>0)d]P’0 < limsup/Se(l_fn<0)d]P’0 < liminf/l_fn<_chP’E‘) :liminf/lfn>ch(’§

n—00 n—00 n—00 n—00

As ¢ > 0, it follows that limsup,_,. [ Se(1s,50)dPy < liminf, ,o [ 1y,-0dP;. Once again,

the second expression of (4.18) follows from this relation and Lemma 82. [
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4.5 (QUANTITATIVE BOUNDS FOR THE p-MARGIN LOSS

As discussed in the introduction, statistical consistency is not the only property one would
want from a surrogate. Hopefully, minimizing a surrogate will also efficiently minimize the
classification loss. Bartlett, Jordan, and McAuliffe [8], Reid and Williamson [53], and Stein-
wart [57] prove bounds of the form R(f) — R. < Gy(R;(f) — Ry.) for a function Gy and
R, =inf; R(f), Ry = infy Ry(f). The function G, is an upper bound on the rate of conver-
gence of the classification risk in terms of the rate of convergence of the surrogate risk. One
would hope that G, is not logarithmic, as such a bound could imply that reducing R(f)— R,
by a quantity A could require an exponential change of e® in Ry(f)— Ry... Bartlett, Jordan,
and McAuliffe [8] compute such G4 for several popular losses in the standard classification
setting. For example, they show the bounds G4(#) = 6 for the hinge loss ¢(a) = (1 — )4
and G4(0) = V0 for the squared hinge loss ¢(a) = (1 — a)2. On can prove an analogous

bound for the p-margin loss in the adversarial setting:

Theorem 84. Let ¢, = min(1, max(1 — «/p,0)) be the p-margin loss, RS = inf; R°(f), and
Ry (f)=infy Ry (f). Then

R(f) — R, < Ry (f) — R, .-
Notice that this theorem immediately implies that the p-margin loss is in fact adversari-

ally consistent. The proof below is completely independent of the argument in Section 4.4.

Proof. Notice that for the p-margin loss, C*p = C" and therefore, the optimal ¢,-risk Ry .
equals the optimal adversarial classification risk R{. However, since ¢,(a) > 1,<¢ and

¢p(—a) > 1,50 for any «, one can conclude that R(f) < R;p(f). Therefore,

Re(f) _ Ri — Re(f) — R;p,* S R;p(f) - Rfﬁz’pv*
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]

This bound implies that reducing the excess adversarial p-margin loss by A also reduces
an upper bound on the excess adversarial classification loss by A. Thus, one would expect
that minimizing the adversarial p-margin risk would be an effective procedure for minimizing
the adversarial classification risk.

Extending Theorem 84 to other losses remains an open problem. In the non-adversarial
scenario, many prior works develop techniques for computing such bounds. These include
the W-transform of [8], calibration analysis in [57], and special techniques for proper losses
in [53].

Contemporary work [40] derives an H-consistency surrogate risk bound for a variant of

the adversarial p-margin loss.

4.6 (CONCLUSION

In conclusion, we proved that the adversarial training procedure is consistent for pertur-
bations in an e-ball if an only if C7(1/2) < ¢(0). The technique that proved consistency
extends to perturbation sets which satisfy existence and minimax theorems analogous to
Theorems 77 and 78. Furthermore, we showed a quantitative excess risk bound for the ad-
versarial p-margin loss. Finding such bounds for other losses remains an open problem. We
hope that insights to consistency and the structure of adversarial learning will lead to the

design of better adversarial learning algorithms.
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5 ADVERSARIAL CONSISTENCY AND
THE UNIQUENESS OF THE

ADVERSARIAL BAYES CLASSIFIER

5.1 INTRODUCTION

Robustness is a core concern in machine learning, as models are deployed in classification
tasks such as facial recognition [72]|, medical imaging [47], and identifying traffic signs in
self-driving cars [19]. Deep learning models exhibit a concerning security risk— small per-
turbations imperceptible to the human eye can cause a neural net to misclassify an image
[14, 58]. The machine learning literature has proposed many defenses, but many of these
techniques remain poorly understood. This paper analyzes the statistical consistency of a
popular defense method that involves minimizing an adversarial surrogate risk.

The central goal in a classification task is minimizing the proportion of mislabeled data-
points— also known as the classification risk. Minimizers to the classification risk are easy
to compute analytically, and are known as Bayes classifiers. In the adversarial setting, each
point is perturbed by a malicious adversary before the classifier makes a prediciton. The
proportion of mislabeled data under such an attack is called the adversarial classification

risk, and minimizers to this risk are called adversarial Bayes classifiers. Unlike the standard
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classification setting, computing minimizers to the adversarial classification risk is a non-
trivial task [11, 51]. Further studies [23, 29, 52, 62, 64] investigate additional properties
of these minimizers, and Frank [23] describes a notion of uniqueness for adversarial Bayes
classifiers. The main result in this paper will connect this notion of uniqueness the statistical
consistency of a popular defense method.

The empirical adversarial classification error is a discrete object and minimizing this
quantity is computationally intractable. Instead, typical machine learning algorithms mini-
mize a surrogate risk in place of the classification error. In the robust setting, the adversarial
training algorithm uses a surrogate risk that computes the supremum of loss over the adver-
sary’s possible attacks, which we refer to as adversarial surrogate risks. However, one must
verify that minimizing this adversarial surrogate will also minimize the classification risk. A
loss function is adversarially consistent for a particular data distribution if every minimizing
sequence of the associated adversarial surrogate risk also minimizes the adversarial classifi-
cation risk. A loss is simply called adversarially consistent if it is adversarially consistent
for all possible data distributions. Meunier et al. [42] show that no convex surrogate is ad-
versarially consistent, in contrast to the standard classification setting where most convex

losses are statistically consistent [8, 38, 43, 57, 75].

OUrR CONTRIBUTIONS: We relate the statistical consistency of losses in the adversarial
setting to the uniqueness of the adversarial Bayes classifier. Specifically, under reasonable
assumptions, a convex loss is adversarially consistent for a specific data distribution iff the
adversarial Bayes classifier is unique.

Frank [23] further demonstrates several distributions for which the adversarial Bayes
classifier is unique, and thus a convex loss would be consistent. Understanding general

conditions under which uniqueness occurs is an open question.
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5.2 RELATED WORKS

Our results are inspired by prior work which showed that no convex loss is adversarially
consistent [5, 42] yet a wide class of adversarial losses is adversarially consistent [26]. These
consistency results rely on the theory of surrogate losses, studied by Bartlett, Jordan, and
McAuliffe [8] and Lin [38] in the standard classification setting and by Frank and Niles-
Weed [25] and Li and Telgarsky [36] in the adversarial setting. Furthermore, [3, 6, 57]
study a property of related to consistency called calibration, which [42] relate to consistency.
Complimenting this analysis, another line of research studies H-consistency, which refines
the concept of consistency to specific function classes [5, 49]. Our proof combines results
on losses with minimax theorems for various adversarial risks, as studied by [25, 26, 52,
63]. Lastly, this work leverages recent results on the adversarial Bayes classifier, which are

extensively studied by [11, 23, 51, 63].

5.3 NOTATION AND BACKGROUND

5.3.1 SURROGATE RISKS

This paper investigates binary classification on R? with labels {—1,+1}. Class —1 is dis-
tributed according to a a measure Py and while class +1 is distributed according to measure
Pi. A classifier is a Borel set A and the classification risk of a set A is the expected

proportion of errors when label +1 is predicted on A and label —1 is predicted on A®:

R(A) :/1Ach1+/1AdP0.

A minimizer to R is called a Bayes classifier. These minimizers can be expressed in terms

of the measure P = Py + IP; and the function n = dP;/dP. The risk R in terms of these
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quantities is

R(A) = / (5, 1.4)dP.
and inf4 R(A) = [ C*(n)dP where the functions C': [0,1] x {0,1} - R and C*: [0,1] = R
are defined by

C(n,b) =nb+(1-n)(1—-0), C*(n) = bei{rgfl}C(m b) = min(n, 1 —n). (5.1)

Thus if A is a minimizer of R, then 14 must minimize the function C(n,-) P-almost

everywhere. Consequently, the sets

{x:n(x)>1/2} and {x:n(x)>1/2} (5.2)

are both Bayes classifiers.

While the Bayes classifier can be described mathematically, minimizing the empirical
classification risk is a computationally intractable problem [9]. A common approach is to
instead minimize a better-behaved alternative called a surrogate risk. As a surrogate to R,

we consider:

Ro(h) = [tz + [ o(-pap,. (53)
The loss ¢ is selected so that the resulting risk is easy to optimize. We assume
Assumption 3. The loss ¢ is non-increasing, continuous, and lim,_ . ¢(a) = 0.

A classifier is obtained by minimizing R4 over all measurable functions and then thresh-
olding f at 0: explicitly, the classifier is A = {x : f(x) > 0}. Due to this construction, we
define

R(f) = R({f > 0}) (5.4)

for a function f.
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One can compute the infimum of R, by expressing the risk in terms of the quantities P
and n:
Ro(f) = [ Colnto0). f0)ap (5.5

and infy Ry(f) = [ C(n(x))dP(x) where the functions Cy(n, a) and C}(n) are defined by

Co(n, @) = ng(@) + (L =n)d(=a),  C4(n) =nf Cy(n, a) (5.6)

for n € [0,1]. Thus a minimizer f of R, must minimize Cy(n(x), ) almost everywhere
according to the probability measure P. The following lemma describes a method for mapping

n(x) to a minimizer of Cy(n(x),-).

Lemma 85. The function ag : [0,1] — R that maps 1 to the smallest minimizer of Cy(n, )

15 non-decreasing.

See Appendix D.1 for a proof. Because o is monotonic, the composition

ag(n(x)) (5.7)

is always measurable, and thus this function is a minimizer of R,. Allowing for minimizers
in extended real numbers R = {—00,+00} UR is necessary for certain losses— for instance

when ¢ is the exponential loss, then Cy(1, «) = e~ does not assume its infimum on R.

5.3.2 ADVERSARIAL SURROGATE RISKS

In the adversarial setting, a malicious adversary corrupts each data point. We model these
corruptions as bounded by € in some norm ||-||. The adversary knows both the classifier A and
the label of each data point. Thus, a point (x,+1) is misclassified when it can be displaced

into the set A® by a perturbation of size at most e. This statement can be conveniently
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written in terms of a supremum. For any function g : R? — R, define

Se(9)(x) = sup g(x'),

x'€Be(x)

where B.(x) = {x" : ||x' — x]|| < €} is the ball of allowed perturbations. The expected error

rate of a classifier A under an adversarial attack is then

RE(A) = / S.(1ac)dP; + / S.(1.4)dPy,

which is known as the adversarial classification risk'. Minimizers of R¢ are called adversarial
Bayes classifiers.

Just like Equation (5.4), we define R°(f) = R({f > 0}):

Re()) = / S.(1<0)dPy + / S.(1120)dPy

Again, minimizing an empirical adversarial classification risk is computationally intractable.

A surrogate to the adversarial classification risk is formulated as?

R(H)= [ S0 i+ [ .00 - )b, 53
Theorem 9 of [25] then extends the construction of a minimizer in Equation (5.7) to the
adversarial setting.

Theorem 86. Let oy be the function in Lemma 85. Then for any distribution Py, Py, there

is a function ) : RT — [0,1] for which ay(7(x)) is a minimizer of R for any loss ¢.

The function 7 can be viewed as the conditional probability of label +1 under an ‘optimal’

!The functions Sc(14), Se(14c) must be measurable in order to define this integral. See [25, Section 3.3]
for a treatment of this matter.
2 Again, see See [25, Section 3.3] for a treatment of measurability.
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adversarial attack [25]. Just as in the standard learning scenario, the function a(7(x)) may
be R-valued. Furthermore, recall that Bayes classifiers can be constructed by theshholding
the conditional probability n at 1/2, as in Equation (5.2). The function 7 plays an analogous

role for adversarial learning.

Theorem 87. Let Py and Py be finite measures and let 1) be the function described by Theo-
rem 86. Then the sets {f) > 1/2} and {f) > 1/2} are adversarial Bayes classifiers. Further-

more, any adversarial Bayes classifier A satisfies

\/Se(l{ﬁ21/2}c)d]?1 S /Se(lA)d]Pl S /S€(1{ﬁ>1/2)0)d]P)1 (59)

and

/Se<1{ﬁ>1/2})dP0 < /Se(lA)dPo < /Se(l{ﬁ>1/2})dpo (5.10)

See Appendix D.3 for a proof and more about the function 7. Equations (5.9) and (5.10)
imply that the sets {7 > 1/2} and {f) > 1/2} can be viewed as ‘minimal’ and ‘maximal’

adversarial Bayes classifiers.

5.3.3 THE STATISTICAL CONSISTENCY OF SURROGATE RISKS

Learning algorithms typically minimize a surrogate risk using an iterative procedure, thereby
producing a sequence of functions f,,. One would hope that that f, also minimizes that

corresponding classification risk. This property is referred to as statistical consistency®.

Definition 88. o [f every sequence of functions f, that minimizes Ry also minimizes R
for the distribution Py, Py, then the loss ¢ is consistent for the distribution Py, P;. If

Ry is consistent for every distribution Py, Py, we say that ¢ is consistent.

3This concept is referred to as calibration in the non-adversarial machine learning context [8, 57]. We use
the term ‘consistent’, as prior work on adversarial learning [4, 42] use ‘calibration’ to refer to a different but
related concept.
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e [f every sequence of functions f, that minimizes Ry also minimizes R® for the distribu-
tion Py, Py, then the loss ¢ is adversarially consistent for the distribution Py, Py . If R
15 adversarially consistent for every distribution Py, Py, we say that ¢ is adversarially

consistent.

A case of particular interest is convex ¢, as these losses are ubiquitous in machine learning.
In the non-adversarial context, Theorem 2 of [8] shows that a convex loss ¢ is consistent iff
¢ is differentiable at zero and ¢'(0) < 0. In contrast, Meunier et al. [42] show that no
convex loss is adversarially consistent. Further results of [26] characterize the adversarially

consistent losses in terms of the function CF:
Theorem 89. The loss ¢ is adversarially consistent if and only if C3(1/2) < ¢(0).
Notice that all convex losses satisfy C3(1/2) = ¢(0): By evaluating at a = 0, one can

conclude that C7(1/2) = inf, Cy(1/2,a) < Cy(1/2,0) = ¢(0). However,

C3(1/2) = inf 50(a) + 5a(—a) > 6(0)

due to convexity. Notice that Theorem 89 does not preclude the adversarial consistency of
a loss satisfying C';(1/2) = ¢(0) for any particular Py, P;. Prior work [26, 42] provides a
counterexample to consistency only for a single, atypical distribution. The goal of this paper

is characterizing when adversarial consistency fails for losses satisfying C7(1/2) = ¢(0).

5.4 MAIN RESULT

Prior work has shown that there always exists minimizers to the adversarial classification
risk, which are referred to as adversarial Bayes classifiers (see Theorem 93 below). Frank

23] further develops a notion of uniqueness for adversarial Bayes classifiers.
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Definition 90. The adversarial Bayes classifiers Ay and Ay are equivalent up to degeneracy
if any Borel set A with Ay N Ay C A C Ay U Ay s also an adversarial Bayes classifier.
The adversarial Bayes classifier s unique up to degeneracy if any two adversarial Bayes

classifiers are unique up to degeneracy.

When P is absolutely continuous with respect to Lebesgue measure, then equivalence up
to degeneracy is an equivalence relation [23, Theorem 3.3]. The central result of this paper

relates the consistency of convex losses to the uniqueness of the adversarial Bayes classifier.

Theorem 91. Assume that P is absolutely continuous with respect to Lebesque measure and
let ¢ be a loss with C}(1/2) = ¢(0). Then ¢ is adversarially consistent for the distribution

Py, Py iff the adversarial Bayes classifier is unique up to degeneracy.

Frank [23] provides the tools for verifying when the adversarial Bayes classifier is unique
up to degeneracy for a wide class of one dimensional distributions. Below we highlight two

interesting examples. Let p; be the density of P; and py be the density of Py.

. . . . . 2 2
e Consider mean zero gaussians with different variances: po(z) = ; \/2170 e~ /2% and
0
.2 2 . . . .
pi(z) = 5 217r0 e~*"/291 The adversarial Bayes classifier is unique up to degeneracy for
1

all € for this distribution [23, Example 4.1].

e Consider gaussians with variance o and means g and pq: po(x) = \/21706_(:6_“0)2/ 20
and py(z) = \/21?0 e~ (@=1)*/20* " Then the adversarial Bayes classifier is unique up to

degeneracy iff € < |3 — po|/2 [23, Example 4.2].

Theorem 91 implies that a convex loss is always adversarially consistent for the first gaussian
mixture above. Furthermore, a convex loss is adversarially consistent for the second gaussian
mixture when the perturbation radius € is small compared to the differences between the
means. However, Frank [23, Example 4.5] provide an example of a distribution for which

the adversarial Bayes classifier is not unique up to degeneracy for all € > 0, even though the
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Bayes classifier is unique. Understanding when the adversarial Bayes classifier is unique up

to degeneracy for reasonable distributions is an open problem.

5.5 UNIQUENESS UP TO DEGENERACY IMPLIES
CONSISTENCY

The proof of the forward direction in Theorem 91 relies on a dual formulation of the adversar-
ial classification problem involving the Wasserstein-oo metric. This tool is presented in the

next section and is then used to prove the forward direction of Theorem 91 in Section 5.5.2.

5.5.1 BACKGROUND— A DUAL PROBLEM FOR THE ADVERSARIAL

CLASSIFICATION RISK

Informally, a measure Q' is within ¢ of QQ in the Wasserstein-oo metric if one can produce
Q' by perturbing each point in R? by at most ¢ under the measure Q. The formal definition
of the Wasserstein—oo metric involves couplings between probability measures: a coupling
between two Borel measures Q and Q' with Q(RY) = Q'(R?) is a measure v on R? x R? with
marginals Q and Q": y(A x RY) = Q(A) and v(R? x A) = Q'(A) for any Borel set A. The
set of all such couplings is denoted I1(Q, Q). The oco-Wasserstein distance between the two
measures is then

Weo(Q,Q) = inf esssupllx—x
@)= inf  esssup x|

Theorem 2.6 of [33] proves that this infimum is always assumed. Equivalently, W (Q, Q") < e

iff there is a coupling between Q and Q' supported on

Ao ={(x,x): |[|[x = x| <€}
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Let B>X(Q) = {Q': W (Q, Q') < €} be the set of measures within e of Q in the W, metric.
The minimax relations from prior work leverage a relationship between the Wasserstein-oo

metric and the integral of the supremum function over an e-ball.

Lemma 92. Let E be a Borel set. Then

/Se(lg)d(@ > sup /1EdQ’
(@)

QeBx

See Appendix D.2 for a proof. Consequently,

inf R(f) > inf sup /1f<0d]P”1—|—/1f>0d]P’0.
f I ByeB(Po) -
PEEBG(Pl)

Does equality hold and can one swap the infimum and the supremum? [26, 52| answer this

question in the affirmative:

Theorem 93. Let Py, Py be finite Borel measures. Define

_ dP;
R(P;,P}) = | C* | —— - | d(P} + P}

where the function C* is defined in Equation (5.1). Then

inf RY(f)= sup R(P;,P))
J Borel P, B (P1)
-value ]P“{)QBE"O(IP’Q)

and furthermore equality is attained for some f*, Pg, P7.

See Theorem 1 of [26] for a proof. Theorems 6, 8, and 9 of [25] show an analogous

minimax theorem for surrogate risks.
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Theorem 94. Let Py, Py be finite Borel measures. Define

D, * * * d]P* * *
Ry(Py, P}) = /CQS (M) d(Pg + PY)

where the function C7 is defined in Equation (5.6). Then

inf RS(f)= sup Ry(P),P))
f Borel P, eB(Py1)
R-valued PLeB (Po)

and furthermore equality is attained for some f*, P§, P}.

Just like Ry, the risk Rf may not have an R-valued minimizer. However, Lemma 8 of
[26] states that

inf RS = inf RS(f).
f Borel ¢(f) f Borel ¢(f)
R-valued R-valued

Additionally, there exists a maximizer to R¢ with especially nice properties. Let I. denote

the infimum of a function over an e ball:

I(9) = inf g(x) (5.11)

x’'€Be(x)

Lemma 24 of [25] proves the following result:

Theorem 95. There exists a function ) : R? — [0,1] and measures B}, € BX(Py), P} €

Bx(Py) for which
I) i =n* P*-a.e., where P* = P§ + P} and n* = dP;/dP*
II) I.(n)(x) = 7(X') 7§-a.e. and Sc(N)(x) = N(x') ~i-a.e., where 1§, i are couplings
between Py, P and Py, P} supported on A..

This result implies Theorem 86: Item I) and Item II) imply that R§(ag(1)) = Ry(Ps,P})
and Theorem 94 then implies that ay(f)) is a minimizer of R and Pf, P; maximize Ry.
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(A similar argument is given in the proof of Lemma 180 of Appendix D.6.1 in this paper.)

Furthermore, the relation R§(ay(7))) = Ry(P§, Pt) also implies
Lemma 96. The P, P} of Theorem 95 mazimize Ry over BX(Py) x BX(Py) for every ¢.

See [25, Lemma 26] for more details. Theorem 87 is proved analogously to Theorem 86 in

Appendix D.3- Item I) and Item II) imply that R°({5; > 1/2}) = R(P§,P}) = R(n) > 1/2})
and consequently Theorem 93 implies that {5} > 1/2}, {#§ > 1/2} minimize R and P§, P}
maximize R. Lastly, uniqueness up to degeneracy can be characterized in terms of these

P Pr.

Theorem 97. Assume that P is absolutely continuous with respect to Lebesque measure.

Then the following are equivalent:
A) The adversarial Bayes classifier is unique up to degeneracy

B) P*(n* = 1/2) = 0, where P* = P§ + P} and n* = dP}/dP* for the measures Py, P} of

Theorem 95.

See Appendix D.4 for a proof of Theorem 97.

5.5.2 PROVING THAT UNIQUENESS IMPLIES CONSISTENCY

Before presenting the full proof of consistency, we provide an overview the strategy of this
argument. Approximate complementary slackness conditions derived in [26] describe mini-

mizing sequences of 1.

Proposition 98. Assume that the measures Py € B>(Py), P € B>(Py) mazimize Rs. Then

any minimizing sequence f, of Ry must satisfy

tin [ cur. fder = [ cgi)a (5.12)
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lim [ Sc(¢pof,)dP;— lim /(bofndP’{ =0, lim /Se(gbo—fn)d]P’S— lim /gbo—fnd]P’S =0
n—oo n—oo n—oo n— o0

(5.13)
where P* = P§ + P} and n* = dP}/dP*.

We will show that when P*(n* = 1/2) = 0, every sequence of functions satisfying Equa-
tion (5.12) and Equation (5.13) must minimize R°. Specifically, we will prove that every

minimizing sequence f, of Rg must satisfy

limsup/Se(lfngo)dIE”l S /177*§;dPT (514)
n—o0
and
limsup/Se(lfn>o)dIP’0 < /ln*>édP(’§ (5.15)
n—oo

for the measures P, P} in Theorem 95. Consequently, P*(n* = 1/2) = 0 implies that
limsup,, o, R<(f,) < R(P;,P%) and the strong duality relation in Theorem 93 implies that
frn must in fact be a minimizing sequence of R°.

We next describe the proof of Equation (5.14). We make several simplifying assumptions
in the following discussion. First, we assume that the functions ¢, o are strictly monotonic
and that for each 7, there is a unique value of o for which né(a) + (1 —n)¢(—a) = C5(n).

@ satisfies these requirements.) Let 7 be a

(For instance, the exponential loss ¢(a) = e~
coupling between P; and P} supported on A..

Because Cy(n*, fn) > Cj(n*), the condition Equation (5.12) implies that Cy(n*, fn)
converges to Cj(n*) in L'(P*), and the assumption that there is a single value of o for
which n¢(a) + (1 — n)é(—a) = Cj(n) implies that the function ¢(f,(x’)) must converge to
dlag(n*(x')) in LY(PY). Similarly, because Lemma 92 states that Sc(¢ o f,)(x) > ¢ o f,.(X')
vi-a.e., Equation (5.13) implies that S.(¢ o f,)(x) — ¢ o f,(x') converges to 0 in L'(~7).

Consequently Sc(¢ o f,,)(x) must converge to ¢(as(n*(x'))) in L'(y7). As L' convergence

118



implies convergence in measure [22, Proposition 2.29], one can conclude that

Tim A7 (Se(@(fn)) (%) = @ 0 (ag(x) > ¢) = 0

for any ¢ > 0. The lower semi-continuity of o + 1,<o implies that [ S.(1,<¢)dP; <

[ 1s.(6(5.0)(x)>0(0)dP1 and furthermore

fim sup / Ls. (620N < / Lo (ag(n () <o(0)—cdV = / L>astop1(p(0)—c) AP 1
(5.16)

Next, we will also assume that a;l is continuous and «ay(1/2) = 0. (The exponential loss
satisfies this assumption as well.)

Due to our assumptions on ¢ and ay, the quantity ¢~ (¢(0) — ¢) is strictly smaller than
0, and consequently, a(;l o0 ¢~ 1(p(0) — ¢) is strictly smalaler than 1/2. However, if oz;l is
continuous, one can choose ¢ small enough so that P*(|n—1/2| < 1/2—a;10¢_1(¢(0) —c)) <90
for any 0 > 0 when P*(n* = 1/2) = 0. This choice of ¢ along with Equation (5.16) proves
Equation (5.14).

To avoid the prior assumptions on ¢ and «, we prove that when 7 is bounded away from

1/2 and « is bounded away from the minimizers of Cy(7, ), then Cy(n, ) is bounded away
from Cj(n).

Lemma 99. Let ¢ be a consistent loss. For all v > 0, there is a constant k., > 0 and an
a, >0 for which if [n —1/2| > r and sign(n — 1/2)a < ;. then Cy(n, o) — C5(n) > ky, and
this . satisfies p(a,) < ¢(0).

See Appendix D.5 for a proof. A minor modification of this argument proves our main

result:

Proposition 100. Assume there exist P € B>(Py), P} € B>(P,) that mazimize Ry for
which P*(n* = 1/2) = 0. Then any consistent loss is adversarially consistent.
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When P is absolutely continuous with respect to Lebesgue measure, uniqueness up to

degeneracy of the adversarial Bayes classifier implies the conditions of this propositon.

Proof. We will show that every minimizing sequence of R must satisfy Equation (5.14) and
Equation (5.15). These equations together with the assumption P*(n* = 1/2) = 0 imply

that

IN

=
~
— %
_|_
—
=
'Y
=
~
o*
I

lim sup R(f,,) < /ln* /U*ln*§1/2+(1_77*)177*>1/2d]1)* = R(P;,P}).

n—o0

The strong duality result of Theorem 93 then implies that f,, must be a minimizing sequence
of R°.
Let § be arbitrary and due to the assumption P*(n* = 1/2) = 0, one can pick an r for
which
P*(|n* —1/2| <r) <. (5.17)

Next, let «,., k. be as in Lemma 99.

Let v be couplings between P; and P} supported on A.. Lemma 92 implies that Se(¢ o
fn)(x) > ¢ o fun(x') 7i-a.e., and thus Equation (5.13) implies that Sc(¢ o f,,)(x) — ¢ o f(x')
converges to 0 in L'(7}). Because convergence in L' implies convergence in measure [22,
Proposition 2.29], Sc(¢ o f,)(x) — ¢ o f,(X') converges to 0 in 7;-measure. Similarly, one can
conclude that Sc(¢ o —f,)(x) — ¢ o —f,(x") converges to zero in 7;-measure. Additionally,
as C3(n*, fn) > C3(n*), Equation (5.12) implies that C}(n*, f,) converges in P*-measure to
C’;(n*). Therefore, Proposition 98 implies that one can choose N large enough so that n > N
implies

7; (60 £)(3) = 0 fulx) 2 6(0) = 6(a)) <. (5.18)
95 (860 —F)(X) = 60 —fulx) 2 6(0) - d(ar) ) < 5, (5.19)

and P*(C3(n*, fn) > C3(n*) + kr) < 0. The relation P*(C3(n*, fn) > C5(n*) + k) < 0 implies
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that

P*(|n* — 1/2| > r, fasign(n® —1/2) < a,) < ¢ (5.20)

due to Lemma 99. Because ¢ is non-increasing, 1y, <o < 1oy, >¢(0) and since the function

2+ 1,54(0) 18 upper semi-continuous,

[ 8:405.2001 < [ 1.0n 20081 = [ Lsonmsandi =7i(560 £,)00) 2 9(0).

Now Equation (5.18) implies that for n > N, outside a set of vf-measure §, Sc(¢ o f,)(x) <
(¢po fr)(x') 4+ ¢(0) — ¢(c,) and thus

/Se<1fn<0)d]P)1 <7 (00 fulx) +0(0) — b)) > ¢(0)) +0 < Pi(d0 fu > Play)) +6 (5.21)

Next, the monotonicity of ¢ implies that Pi(¢ o f,(x') > ¢(a.)) < Pi(f, < o) and thus

Equation (5.17) implies
/Sg(lfngo)dpl <Pi(fn <o)+ <Pi(fn < ap,|n"—1/2| > 1)+ 26. (5.22)
Next, Equation (5.20) implies P (n* > 1/2 +r, f,, < a,) < ¢ and consequently
/Sg(lfngo)dIP’l <Pi(fn>amn" <1/2—1)+30 <Pi(n" <1/2)+ 34.

Because ¢ is arbitrary, this relation implies Equation (5.14). Observe that 1r>0 = 1_f<,
and thus the inequalities Equations (5.21) and (5.22) hold with —f,, in place f,,, Po, P§, 7§

in place of P, Pf, ~, and Equation (5.19) in place of Equation (5.18) resulting in

/Se(lfn>0)d]P)0 S ]PS(fn < — ’T]* — 1/2‘ 2 T') + 26
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Next, Equation (5.20) implies Pj(n* < 1/2 —r, f,, > —a,) < § and consequently
/56(1fn20)d1p0 <Pi(fo < —an," > 1/247) + 30 < Pi(n* > 1/2) + 36.

Because ¢ is arbitrary, this relation implies Equation (5.15).

5.6 CONSISTENCY REQUIRES UNIQUENESS UP TO
DEGENERACY

We prove the reverse direction of Theorem 91 by constructing a sequence of of functions f,
that minimize R for which R¢(f,) is constant in n and not equal to the minimal adversarial

Bayes risk.

Proposition 101. Assume that Py, Py are absolutely continuous with respect to Lebesque
meaure the adversarial Bayes classifier is not unique up to degeneracy for the distribution

Po,P1. Then any consistent loss ¢ satisfying C(1/2) = ¢(0) is not adversarially consistent.

First, Theorem 87 together with a result of [23] imply the adversarial Bayes classifier is
unique iff { > 1/2} and {n > 1/2} are equivalent up to degeneracy, see Appendix D.6 for

proof.

Lemma 102. Assume P is absolutely continuous with respect to Lebesgue measure. Then
adversarial Bayes classifier is unique up to degeneracy iff the adversarial Bayes classifiers

{n>1/2} and {n > 1/2} are equivalent up to degeneracy.

Therefore, if the adversarial Bayes classifier is not unique up to degeneracy, then there
is a set A that is not an adversarial Bayes classifier but {f > 1/2} ¢ A c {5 > 1/2}.
Theorem 86 suggests that a minimizer of R§ can equal zero only when 7 = 1/2. Thus we

122



select a sequence f, that is strictly positive on A, strictly negative on A€, and approaches 0

on {n = 1/2}. Consider the sequence

ag(n(x))  7(x) #1/2

H(x)=1/2,xc A (5.23)

=
»

~—
I
3=

— i(x)=1/2,x ¢ A

Then R(f,) = R°(A) > infy R°(A) for all n and one can show that f, is a minimizing
sequence of . However, f, may assume the values 0o because the function ay, is R-valued.
A slight modification of these functions produces an R-valued sequence that minimizes Rj

but R(f,) = R(A) for all n. See Appendix D.6 for a formal proof.

5.7 CONCLUSION

In summary, we prove that under a reasonable distributional assumption, a convex loss is
adversarially consistent iff the adversarial Bayes classifier is unique up to degeneracy. This
result connects an analytical property of the adversarial Bayes classifier to a statistical prop-
erty of surrogate risks. Hopefully, this connection will aid in the analysis and development

of further algorithms for adversarial learning.
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§) CONCLUSION

This thesis provides an array of tools for understanding adversarial risks. Insights from these
tools include an explanation of the phenomenon of transfer attacks, formulas for minimizers
of these risks, and a characterization of the consistency of these surrogate risks. Hopefully,

the results from this research will assist in the development of algorithms for robust learning.
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A DEFERRED PROOFS FROM

CHAPTER 2

A.1 THE UNIVERSAL 0-ALGEBRA AND A GENERALIZATION

OF THEOREM 1

A.1.1 DEFINITION OF THE UNIVERSAL 0-ALGEBRA AND MAIN

MEASURABILITY RESULT

In this Appendix, we prove results for supremums over an arbitrary compact set, not nec-
essarily a unit ball. For a function ¢g: R? — RY we will abuse notation and denote the

supremum of g over the compact set B by

Sp(g)(x) = Sup g(x +h).

Let X be a separable metric space and let B(X) be the Borel o-algebra on X. Denote

the completion of B(X) with respect to a Borel measure v by £, (X). Let M, (X) be the
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set of all finite' positive Borel measures on X. Then the universal o-algebra on X, % (X) is

w(X)= () LX) (A.1)

veM, (X)

In other words, the universal o-algebra is the sigma-algebra of sets which are measurable
with respect to the completion of every Borel measure. Thus % (X) is contained in £, (X)

for every Borel measure v. The goal of this appendix is to prove

Theorem 103. If f is universally measurable and B is a compact set, then Sg(f) is uni-

versally measurable.

Thus, if Py, Py, and g are Borel, integrals of the form [ Sc(¢g)dP; in (2.10) can be inter-

preted as the integral of S.(¢) with respect to the completion of P;.

A.1.2 PROOF OUTLINE

To prove Theorem 103, we analyze the level sets of Sg(g). One can compute the level set

[Sp(g)(x) > a] using a direct sum.

Lemma 104. Let g: RY — RY be any function. For a set B, define —B = {—b: b € B}.
Then

[Sp(g) >a] =[g>al®-B

Proof. To start, notice that Sg(g)(x) > a iff there is some h € B for which g(x + h) > a.
Thus

x € [Sp(g) >a] & x+heg>a]forsomeheB&xeg>al®—B

]

! Alternatively, one could compute the intersection in (A.1) over all o-finite measures. These two ap-
proaches are equivalent because for every o-finite measure A\ and compact set K, the restriction AL K is a
finite measure with £, ,(X) D Lx(X).
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Therefore, to show that Sg(g) is measurable for measurable g, it suffices to show that
the direct sum of a measurable set and the compact set B is measurable. Thus, to prove

Theorem 103, it suffices to demonstrate the following result:
Theorem 105. Let A € % (R?) and let B be a compact set. Then A® B € % (R?).

The proof of Theorem 105 follows from fundamental concepts of measure theory. A
classical measure theory result states that if f : X — Y is a continuous function, f~! maps
Borel sets in Y to Borel sets in X. Consider now the function w: B x R — B x R? given by
w(h,x) = (h,x—h). Then w is invertible and the inverse of w is w™' (h, x+h). Furthermore,
w~! maps the set B x A to B x A® B. Therefore, if A € B(R?), then B x A® B is Borel in
B(B x RY). However, from this statement, one cannot conclude that A ® B is Borel in R/
On the otherhand, one can use regularity of measures to conclude that A @ B is in % (R?).

Therefore, to prove Theorem 105, we prove the following two results:
Lemma 106. Let B C R? be a compact set. Then B x A € % (B x R?) iff A € % (R?).

In this document, we say a function f: X — Y is universally measurable if f~1(E) €

% (X) whenever E € % (Y).

Lemma 107. Let f : X — Y be a Borel measurable function. Then f is uniwversally

measurable as well.

This result is stated on page 171 of [10], but we include a proof below for completeness.
Lemma 107 applied to w implies that the set B x A & B is universally measurable while

Lemma 106 implies that A @ B is universally measurable.

A.1.3 PROOF OF THEOREM 105

We begin by proving Lemma 107.
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Proof of Lemma 107. Let A be a Borel set in Y. We will show that for any finite measure
von X, f71(A) € L,(X). As v is arbitrary, this statement will impy that f~'(A4) € Z (X).

Consider the pushforward measure p = ffiv. This measure is a finite measure on Y, so
by the definition of % (Y), A € L£,(Y). Therefore, there are Borel sets By C A C By in Y
for which u(By) = u(Bs). Thus, f~1(By), f~(Bsy) are Borel sets in X for which f~!(B;) C
YA C fYBy) and v(f~1(By)) = v(f1(Bs)). Therefore, f~1(A) € L,(X). O

On the other hand, the proof of Lemma 106 relies on the definition of a regular space X:

Definition 108. A measure v is inner regular if for every Borel set A,

v(A)= sup v(K).
K compact
KCA

The topological space X is regular if every finite Borel measure on X 1is inner reqular.

The following result implies that most topological spaces encountered in applications are

regular.
Theorem 109. A o-compact locally compact Hausdorff space is reqular.

This theorem is is a consequence of Theorem 7.8 of [22].

The notion of regularity extends to complete measures.

Lemma 110. Let U be the completion of a measure v on a reqular space X. Then for any

AelL,(X),

N

(A)= sup v(K).
K compact
KcCA

The proof of this result is left as a exercise to the reader.

Now using the concept of regularity, we prove Lemma 106.

Proof of Lemma 106. We first prove the forward direction. Consider the projection function
Il,: B x R? — R? given by II(x,y) = y. Then II, is a continuous function and IT;'(A) =
129



B x A. Therefore Lemma 107 implies that if A is universally measurable in R¢, then B x A
is universally measurable in B x R¢.

To prove the other direction, assume that B x A is universally measurable in B x R
Let v be any finite Borel measure on R?. We will find Borel sets By, By with By C A C B,
for which v(B;) = v(By), and thus A € £,(R%). As v was arbitrary, it follows that A is
universally measurable.

Theorem 109 implies that B x R? is a regular space. Fix a Borel probability measure A
on B. Then X\ x v is a finite Borel measure on B x R%, so it is inner regular. Let A x v be

the completion of A x v. Then by Lemma 110,

AXv(BxA)= sup Axv(K)

K compact

KCBxA
We will now argue that
sup Axv(K)= sup v(K) (A.2)
K compact K compact
KCBxA KCA

Let K C B x A and let II; be projection onto the second coordinate. Because the continuous
image of a compact set is compact, K’=II5(K) is compact and contained in A. Thus Bx A D

B x K' D K, which implies (A.2). Now (A.2) applied to A® implies that

Axv(X xA)= inf AxvlU)= _inf v(U).

UC€ compact U€ compact
UDBxA UDA
Thus
sup v(K)= _inf v(U):=m
K compact UC compact
KCA UDA

Let K, be a sequence of compact sets contained in A for which lim,,_,., v(K,) = m and U,
a sequence of sets containing A for which Unc is compact and lim,,_,, v(U,) = m. Because a

finite union of compact sets is compact, one can choose such sequences that satisfy K,,1 D
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K, and U, C U,. Then B; = |J K, By = (U, are Borel sets that satisfy B; C A C B,
and v(B;) = v(Bs) so A € L,(R%).

Lastly, we formally prove Theorem 105.

Proof of Theorem 105. Consider the function w: B x R — B x R? given by w(h,x) =
(h,x — h). Then w is continuous, invertible, and w~!(h,x) = (x,x + h).

Now let A € % (R?). Then Lemma 106 implies that B x R? is universally measurable in
B x A. Lemma 107 then implies that w™(B x A) = B x A @® B is universally measurable

as well. Finally, Lemma 106 implies that A ® B € % (R?) as well. O

A.2 ALTERNATIVE CHARACTERIZATIONS OF THE W
METRIC

We start with proving Lemma 3 using a measurable selection theorem.

Theorem 111. Let X.,Y be Borel sets and assume that D C X XY 1is also Borel. Let D,

denote

D, ={y: (z,y) € D}

and

Projy(D): ={xz: (z,y) € D}

Let f: D — R be a Borel function mapping D to R and define

f*(x) = inf f(z,y)

yeDa:
Assume that f*(x) > —oo for all x. Then for any § > 0, there is a universally measurable
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v: Projy (D) — Y for which
fx,o(2)) < f() +96
This statement is a consequence of Proposition 7.50 from [10].

We use the following results about universally measurable functions, see Lemma 7.27 of

[10].

Lemma 112. Let g : R? — R be a universally measurable function and let Q be a Borel

measure. Then there is a Borel measurable function ¢ for which ¢ = g Q-a.e.
This result can be extended to R%valued functions:

Lemma 113. Let g : R? — RY be a universally measurable function and let Q be a Borel

measure. Then there is a Borel measurable function ¢ for which ¢ = g Q-a.e.

Proof. Let e; denote the ith basis vector. Then ¢; := e; - g is a universally measurable
function from R? to R, so by Lemma 112, there is a Borel function ¢; for which ¢; = g;

Q-a.e. Then if we define ¢ = (1, @2, ..., paq), this function is equal to g Q-a.e. O

Finally, we prove Lemma 3. Due to Lemmas 112 and 113, this lemma heavily relies on

the fact that the domain of our functions is R? rather than an arbitrary metric space.

Lemma 114. Let Q be a finite positive Borel measure and let f: R? — RU{co} be a Borel

measurable function. Then

[snia= s [ ra (2.13)
(@)

Q'eBg

Recall that this paper defines the left-left hand side of (2.13) as the integral of S.(f) with

respect to the completion of Q.
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Proof. To start, let @ be a Borel measure satisfying W (Q',Q) < e. Let v be a coupling

with marginals Q and Q" supported on A.. Then

[ 10 = [ 16)dr6ex) = [ 1)1 xx)
< /S(f)( X)L x|<cdy (X, X') = /Se x)dy(x,x') = /Se(f)dQ

Therefore, we can conclude that

dQ' < [ S.(f)dQ.
@/S;E(Q)/f@—/ (f)dQ

We will show the opposite inequality by applying the measurable selection theorem.
Theorem 111 implies for each § > 0, one can find a universally measurable function ¢: R? —
B.(x) for which f(p(x)) +d > S.(f)(x). By Lemma 113, one can find a Borel measurable
function T for which T' = ¢ Q-a.e.

Let Q' = Qo T~ ! Because T is Borel measurable, Q' and f o T are Borel. We will now
argue that [ fdQ + 9 > [ Sc(f)dQ. Recall that ¢ is always measurable with respect to the
completion of Q, and by convention [ gdQ means integration with respect to the completion

of Q. Then if we define M = Q(RY),

[ taw = [ rager = [ s = [ eeope = [sin-s0a- [ s.ae-au

Because § > 0 was arbitrary and Q' € B(Q),

[snaes sw [ a
Q' eBx(Q)

It remains to show that W (Q, Q') < e. Define a function G: R? — R? x R¢, G(x) =
(x,T(x)) and a coupling v by v = GfQ. Then y(A,.) = G4Q)(A.) = Q(G7Y(A,)) =1, so
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supp(v) C A.. ]

Next we prove Lemma 4. We begin by presenting Strassen’s theorem, see Corollary 1.28

of [65] for more details

Theorem 115 (Strassen’s Theorem). Let P,Q be positive finite measures with the same

mass and let € > 0. Let TI(IP, Q) denote the set couplings of P and Q. Then

inf )7T({||X —yll>¢)= sup Q(A) —P(A9) (A.3)

mell(P,Q A closed

Strassen’s theorem is usually written with A€ in (A.3) replaced by A9 = {x: dist(x, A) <
¢}—however, for closed sets A9 = A€, Strassen’s theorem together with Urysohn’s lemma

then immediately proves Lemma 4.

Lemma 116 (Urysohn’s Lemma). Let A and B be two closed and disjoint subsets of RY.

Then there exists a function f: R — [0,1] for which f =0 on A and f =1 on B.
See for instance result 4.15 of [22].

Lemma 117. Let P, Q be two finite positive Borel measures with P(R?) = Q(R?). Then
W (P, Q) = inf{e > 0: /hd@ < /Sg(h)dP Vh € Cy(R)}

Proof. First, notice that Lemma 3 implies that if Q € B>(P), then [ S.(h)dP > [ hdQ for
all h € Cy(RY), proving the inequality > in the statement of the lemma.

We will now argue the other inequality: specifically, we will show that

su A) —P(A° su hdQ — [ S.(h)dP A.
b Q(A) - B(AY) < p)/@/m (A4)

A closed heCy(Re

Strassen’s theorem will then imply that W (P,Q) < e. Let § be arbitrary and let A be a
closed set that satisfies sup 4 oseq Q(A) —P(A°) < Q(A)—P(A°)+0. Now because A is closed,
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A, = A® By/,(0) is a series of open sets decreasing to A and Af, = A°® By /,(0) is a sequence
of open sets decreasing to A°. Thus pick n sufficiently large so that P(AS — P(A€) < §. By
Urysohn’s lemma, one can choose a function h which is 1 on A, 0 on AY, and between 0 and
1 on A, — A°. Then S.(h) is 1 on A€, 0 on (AS)° and between 0 and 1 on A¢ — A°. Then
[ hdQ — Q(A) > 0 and thus

( / hdQ — / Se(h)d]P)) — (Q(A) — P(A%)) > P(A°) — P(AS) > 4.

Because § was arbitrary, (A.4) follows. O

A.3 MINIMIZERS OF Cy(n,-): PROOF OF LEMMA 25

Lemma 118. Fiz a loss function ¢ and let ay(n) be as in (2.8). Then a, maps n to the

smallest minimizer of Cy(n,-). Furthermore, the function ay(n) non-decreasing in 1.

Proof. To start, we will show that a,(n) as defined in (2.8) is a minimizer of Cy(n,-). Let S
be the set of minimizers of C’;(n, -), which is non-empty due to the lower semi-continuity of
¢. Let a = inf S = ay(n) and let s; € S be a sequence converging to a. Then because ¢ is

lower semi-continuous,

C3(n) = Timinf no(s:) + (1= m)o(—s:) > noa) + (1 = mo(—a)

Then a is in fact a minimizer of C}(n),-), so it is the smallest minimizer of C}(n, -).
We will now show that the function oy is non-decreasing.

One can write

135



Co(n2, @) = mg(@) + (1 = m)o(—a)
= mo(a) + (1 =m)o(=a) + (1 = m)(d(a) - (-a))

= Co(m, @) + (12 — m)(d(e) — ¢(—)) (A.5)

Notice that the function a — ¢(a) — ¢(—«) is non-increasing. Then because ay(n;)
is the smallest minimizer of Cy(n, ), if a < ay(m), then Cy(m,a) > Cu(n, ap(m)).
Furthermore, ¢(a) — ¢(—a) > éd(ag(m)) — ¢(—ag(m)). Therefore, (A.5) implies that

Cyp(n2, ) > Cy(ne,a(m)), and thus a cannot be a minimizer of Cy(1,-). Therefore,

ag(n2) = ag(m).

A.4 CONTINUITY PROPERTIES OF Ry—PROOF OF
LEMMA 12

Recall the function G(n, ) defined by (2.47). With this notation, one can write the C7

transform as hl% = sup,co.1] G(1, h).

Lemma 119. Let ¢ > 0 and consider a > ¢. Let a(a) = a%, where the Cy transform is as

in Lemma 22. Then there is a constant k < 1 for which

The constants k depends only on c.

Proof. Recall that the function G(n, «) is decreasing in « for fixed n and continuous on [1, 0).
Let k = sup{n: G(n,c) > 0}. As cis strictly positive, one can conclude that lim,_,; G(n, c) =
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—oo and as a result k < 1. Because G is decreasing in «, one can conclude that G(n,a) <0
for all n > k and o > ¢. However, sup, ¢y 1) G(7, @) > 0 because G(0, ) = 0 for all a. Thus
(A.6) holds.

O

Lemma 120. Let {f,} be a set of L-Lipschitz functions. Then sup,, f. is also L-Lipschitz.
This statement is proved in Box 1.8 of [55].

Lemma 121. Let Q be any finite measure and assume that g is a non-negative function in
LYQ). Let 6 > 0. Then there is a lower semi-continuous function g for which [|g—g] <é

and g > 0.
See Proposition 7.14 of Folland.

Lemma 122. Let g be a lower semi-continuous function bounded from below. Then there is

a sequence of Lipschitz functions that approaches g from below.
This statement appears in Box 1.5 of [55].

Corollary 123. Let h be an L'(Q) function with h > 0. Then for any §, there erists a
Lipschitz h for which [ |h — h|dQ < 6.

Proof. By Lemma 121, one can pick a lower semi-continuous g for which g > 0 and [ |h —
§ldQ < /2. Next, by Lemma 122, one can pick a Lipschitz h for which [ |§ — h|dQ < §/2.
Thus [ |h — h|dQ < 6. O

Lemma 124. Let K C R be compact, E = Cy(K¢) x Cy(K*¢), and Py, P} € M (K¢). Then

- / hydP, + / hodPly = R,(P), ) (2.27)

Therefore, Ry is concave and upper semi-continuous on M (K¢) x M (K¢) with respect

to the weak topology on probability measures.
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Proof. Let P’ =P + P} and n/ = dIP}/dP’. Then for any (hg, h1) € Sy N E,

We will now focus on showing the other inequality. Define a function f by

ag(n'(x)) x € supp P’
f=14"
0 x ¢ supp

Let hy = ¢o f, hg = ¢ o —f. Then hy, hg satisfy the inequality nhy + (1 —n)ho > Cj(n) for
all n while on supp ", n'(x)h1(x) + (1 — 7'(x))ho(x) = C}(n') and therefore

/ hidP, + / hodP) = / 7'hy + (1 — 1) hodP' = / O3y ()P,

However, (ho,h1) ¢ E. We will now approximate hg, hy by bounded continuous functions
contained in S,. Let § > 0 be arbitrary. Pick a constant ¢ > 0 for which [ ¢dP’ < § and set

hy = max(hy, c). The pair (hy, l~11) are feasible pair for the set Sy, and thus
C5(n) —nhy — (1 —n)ho < 0 (A7)

Furthermore,

/ FudP’, + / hodP, < Ry(F),P,) + 6. (A.8)

Let k be the constant described by Lemma 119 corresponding to c¢. Now by Corollary 123,
there is a Lipschitz function g for which [ |7y —g|dP’ < min((1—k)/k,1)8. Let hy = max(g, c).

Then Lemma 120 implies that hy has the same Lipschitz constant as g, and the fact that
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l~11 > ¢ implies that
- . : - , o (1—k
|h1 — hy|dP" < [ |hy — g|dP" < min 5 1)d (A.9)

Now let ﬁo = ch*;;. By Lemma 119, the supremum in the % transform for computing ﬁo
can be taken over [0, k]. Therefore, if L is the Lipschitz constant of hi, Lemma 120 implies
that the Lipschitz constant of hg is at most kL/(1 — k). Furthermore, ho, hy are bounded on
K¢ because Lipschitz functions are bounded over compact sets. Thus (ﬁo, 711) isin Sy NE.

Next, we will show that [ hyo is close to | ho.

. C(n) — nh
/ ho — hodP) = / sup Lo T e

ok 1—n
C*(n) — nhy — (1 —n)h
/Sup 5(n) 771 11— (1—n) 0 g
[0,k] -
C*(n) —nhy — (1 —n)h .
[0,k] L—n L—mn
C*(n) —nhy — (1 —n)h .
[0.] =1 ok 1 =7
/sup i (hy — hy)dP)) = (Equation A.7)
[0,k] I—n
% / hy — ile]P’g <4 (Equation A.9)

Therefore, by (A.8), (A.9), and the computation above,
/ hydP| + / hodP) < Ry(P), ;) + 3.

As § > 0 is arbitrary, this inequality implies (2.27). Because K¢ is compact, the upper semi-
continuity and concavity of R4 then follows from (2.27) together with the Reisz representation

theorem. ]
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A.5 DuALITY FOR DISTRIBUTIONS WITH ARBITRARY

SUPPORT—PROOF OF LEMMA 14

We begin with the simple observation that weak duality holds for measures supported on R

This argument is essentially swapping the order of an infimum and a supremum as presented

in Section 2.4.1.

Lemma 125 (Weak Duality). Let ¢ be a non-increasing and lower semi-continuous loss

function. Let Sy, be the set of pairs of functions defined in (2.25) for K = R?.

Then

inf

O(hg, hy) >
(ho,h1)€5¢ ( 0 1) -

Proof. By Lemma 3,

inf
(ho ,h1)€S¢

/Se(ho)dPo+/S€(h1)dP1 -

Thus by swapping the inf and the sup,

lnf /Se(ho)dpo—i—/se(hl)dpl 2
(h07h1)65¢
- dP,
= sup inf /—h n
PheB(Po) (ho,h1)€Sy d(P6+P,1) 1
Py eBge(Py)
> sup  Ry(P,PY)
PoeBee (Po)
Py eB°(P1)

sup Ry (P, PY)
PheB (Po)
IP’/I GBSO (]Pl)

inf sup
(ho,h1)€Ss Pl eB2 ()
PyeBge(P1)

/ hodP!, + / hadP,

sup inf
P} eB (Py) (ho,h1)€S,
PIIEB?O (Pl)

(1_L1”1
d(P; +PY)

/ hodP) + / hidP,

) hod (P + P))

]

The main strategy in this section is approximating measures with unbounded support by
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measures with bounded support. To this end, we define the restriction of a measure P to a
set K by P|x(A) =P(KNA).
The Portmaneau theorem then allows us to draw some conclusions about weakly conver-

gent sequences of measures.

Theorem 126 (Portmanteau Theorem). The following are equivalent:
1) The sequence Q" € M, (R?) converges weakly to Q
2) For all closed sets C, limsup,,_,.. Q"(C) < Q(C) and lim,,_,,, Q"(RY) = Q(R?)
3) For all open sets U, liminf, ,.,, Q*(U) > Q(U) and lim,,_.,, Q"(R?) = Q(R?)

See Theorem 8.2.3 of [15]. This result allows us to draw conclusions about restrictions of

weakly convergent sequences.

Lemma 127. Let Q",Q € M, (R?) and assume that Q™ converges weakly to Q. Let K be

a compact set with Q(OK) = 0. Then Q"|x converges weakly to Q|f.

Proof. We will verify 2) of Theorem 126 for the measures Q"|x, Q.

First, because Q(K) = Q(int K'), Theorem 126 implies that

limsup Q"(K) < Q(K) = Q(int K) < liminf Q" (int K) < lim inf Q" (K)).

n—o00 n—oo n—oo

Therefore, lim,, o, Q"|x(R?) = lim,, ., Q(K) = Q(K). Next, for any closed set C, the set

C' N K is also closed so the fact that Q™ weakly converges to Q implies that

limsup Q"|x(C) = limsup Q" (K NC) < QK NC) =Q|x(C).

n—oo n—oo

Next, Prokhorov’s theorem allows us to identify weakly convergent subsequences.
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Theorem 128. Let Q" be a sequence of measures for which sup, Q"(R?) < oo and for all §,
there exists a compact K for which Q"(K%) < 6 for alln. Then Q™ has a weakly convergent

subsequence.

See Theorem 8.6.2 of [15]. These results imply that R4 is upper semi-continuous on

M (RY) x M (RY).

Lemma 129. The functional R¢ 1S upper semi-continuous with respect to the weak topology

on probability measures (in duality with Co(R?)).

Notice that Lemma 12 implies that R;s is upper semi-continuous on the space M (K¢) x
M, (K¢) for a compact set K. However, on R? weak convergence of measures is defined
with respect to the dual of Cy(R?), the set of continuous functions vanishing at co. This set
is strictly smaller than Cy(R?), and thus the relation (2.27) would not immediately imply

the the upper semi-continuity of R,

Proof. Let Qp,Q} be sequences of measures converging to Qp, Q; respectively. Set Q =
Qo + Q1.

Define a function F(R) = Q(Bg(0) ). Then because this function is non-increasing, it
has finitely many points of discontinuity.

Let 0 > 0 be arbitrary and choose R large enough so that F'(R) < /C5(1/2) and F is
continuous at R. Then notice that P(O0Bg(0)) = 0 and thus one can apply Lemma 127 with
the set Bx(0).

Now let vy, v1 be arbitrary measures. Consider v;* defined by vf* = vi|z 5. Set v =

vo +v1, n =dv/dv, v =yl + VR nf = dvl/dv®. Then on Bg(0), n® = n a.e. Thus

Rl = Rolounmn)l = | [ €t — [ Clas

< ¢ (3) B0 (10

If we define Q; g, Q' z via Q; g = Qi‘m’ Qrr=QF = @ﬂm, Lemma 127 implies that

Q}'r converges weakly to Q; g and lim,, Q”(BR(O)C) = Q(Br(0)¢) < 6. Therefore, for
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sufficiently large n, Q"(BR(O)C) <26/C3(1/2). By Lemma 12 and (A.10),

lim sup R¢(Q87 Q?) < limsup Rqﬁ( g,Ra ?,R) +20 < R(b(QO,Ran,R) +20 < Rq&(@ﬂ»@l) + 30

n—o0 n—oo

Because ¢ was arbitrary, the result follows.

Next we consider an approximation of Py, P; by compactly supported measures.

Lemma 130. Let Py, Py be finite measures. Define P = IFHm for n € N. Then P§, P}
converge weakly to Py, Py respectively. Furthermore, there are measures Py € BX(Py), P} €

B>(Py) for which

limsup sup  Ry(Py,P)) < Ry(P;, P}) (A.11)
n—oo  PreBg(PY)
PoeBee (Po)™

Proof. Set P = Py + Py, P* = Py + P?. Notice that 2) of Theorem 126 implies that P}
converges weakly to ;. Let Py™,P7" be maximizers of R, over B2 (Py) x B(Pr). Next,

by Strassen’s theorem (Theorem 115), P*(B,(0)) < P!"*(B,1.(0)) and thus Pi(BT(O)C) >

P (T(O)C) > P*(B,,.(0)). Therefore, one can apply Prokhorov’s theorem (Thereom 128)
to conclude that Py, P1"" have subsequences Pi** P*™ that converge to measures P, P
respectively. The upper semi-continuity of R, (Lemma 129) then implies that Pf, P} satisfy
(A.11).

It remains to show that P¥ € BX(P;). We will apply Lemma 4. Because P/** € B> (P}*)
for all nj, Lemma 4 implies that for every f € Cy(RY), [ S.(f)dPi* > [ fdP;™. Because
P! converges weakly to P; and P converges weakly to P}, one can take the limit k — oo
to conclude [ S.(f)dP; > [ fdP; for all f € Cp(R?). Lemma 4 then implies P} € B>(P;).

O

Lemma 131. Let ¢ be a non-increasing, lower semi-continuous loss function and let Py, Py
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be finite Borel measures supported on R®. Let Sy be as in (2.25). Then

inf  O(hg,h1) = sup Ry(P,, P
(hO’h1)€S¢ ( ’ 1) IPE)EB?OP(P()) ¢( 0 1)
P! €B> (Py)

Furthermore, there exist Py, P} which attain the supremum.

Proof. Let Pj, P}, P§, P be the the measures described in Lemma 130. Notice that because

Py, PT are compactly supported, Lemma 13 applies. Define

©"(hg,hy) = /Sg(hl)dIP)’ij/Se(ho)dPg.
Thus Lemmas 13 and Lemma 130 imply that

limsup inf = ©"(hg,hy) = limsup sup Ry(Py,P)) < Ry(P,P;) < sup  Ry(Pp,P)).

n—oo (ho,h1)€Sg n—o0 P6€B§><>(P3) ]P’{)GBEOO(]P’O)
P, eB(P1) P, eB(P1)
(A.12)
We will show
inf  ©(hg,hy) <limsu inf  ©,(hg, h1). A.13
(ho,h1)€Sy ( 0 1) o naoop (ho,h1)€Sy ( 0 1) ( )
Equations A.12 and A.13 imply that
(ho,h1)€Sy PLeB (Po)
P B (Py)

This relation together with weak duality (Lemma 125) imply that the inequalities in
(A.14) are actually equalities. Therefore strong duality holds and Py, P} maximizes the dual.
Next, we prove the inequality in (A.13). Let 6 > 0 be arbitrary and choose an n € N for
which n > 2¢ and
C) -

Pl(Bn—Qe(O) + ]P)O(Bn—Qe(O) ) S 0 (A15)
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Let (h{, hY) € S, be functions for which

n n n < : n .
©"(hg, hY) < (hoirll)fe% ©"(ho,h1) + 0 (A.16)
Define
N h§ x € B,_(0) _ hy X € B,_.(0)
C;(3) x¢& Bac(0) Cy(3) x¢&B,(0)

Because nhi + (1 —n)ht > Ci(n) Vn € [0,1] on B, (0) and (C}(1/2),C5(1/2)) € Sy, one

can conclude that (k% h?) € S,.

Now because n > 2¢, the regions B,,_(0), B,,_2.(0) are non-empty. One can bound Se(fzi)
in terms of S(h;) and C}(1/2):

Sc(hi)(x) = S.(h;)(x) for x € B,,_2.(0)
Se(hi)(x) < max(S.(h;)(x), C(1/2)) < Se(hi) + C3(1/2) for x € B,(0)
S(hi) = C3(1/2) for x € By (0)"

Now for each i, these bounds imply that

/ Sc(h™)dP; < / Sc(h)dP;

Bn—Qe (O)

1 1
+ / S.(h)+ (-) dP; + / c (-) dP;
B (0)—Bn_2.(0) 2 Bn(0)° 2
1
- / S, (h")dP; + / C; (—) dP;
B.00) Bua(0)  \2
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Then, applying this bound for each 1,

o, i) = / S.(77) B, + / S.(7)dPy

g( / S.(WT)dP, + / Se(hg)dPO)
B, (0) n(0)

1 1
(e[ o))
( B"—QE(O)C d) 2 ' Bn—2e(0)c ¢ 2 ’

= 0" (hj. 1))+ C; (%) (Bo(Boma0) ) + B (Bia0))

1

(ho,h1)€5¢

The last inequality follows from Equations A.15 and A.16. Because § arbitrary, (A.13) holds.
]

A.6 COMPLEMENTARY SLACKNESS

Lemma 132. Assume that Py, [Py are compactly supported. The functions hj, hi minimize

© over Sy and (P4, ;) mazimize Ry over BX(Py) x B>(Py) iff the following hold:

1)
/ hidP; = / S.(h?)dPy and / hidP: = / S (ht)dPg (2.30)

2) If we define P* = P + P} and n* = dPP}/dP*, then

1 (x)h1(x) + (1 = 0" (x))ho(x) = C5(n" (%)) P-a.e. (2.31)

Notice that the forward direction of this lemma is actually a consequence of the approxi-
mate complementary slackness result in Lemma 16, but we provide a separate self-contained

proof below.
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Proof. First assume that (P, P) maximizes R, over B> (Py) x B> (P;) and (h, h}) minimizes

© over S,. Because P} € B>(P;) and (hg, hi) € Sy, by Lemma 3

O(ht, hy) = / S.(h?)dP; + / S.(h2)dPq > / BrdPt + / B dP, (A.17)

= [ =y = [ Gy = R B (A18)

By Lemma 14, both the first expression of (A.17) and the last expression of (A.18) are equal.
Thus all the inequalities above must be equalities which implies (2.31). Next, because (A.18)

implies that

/ S.(R)dP; + / S.(h2)dPy = / hidP; + / hydP;

and Lemma 3 implies that [ Sc(h)dPy > [ hidP; and [ S.(hi)dPy > [ hidP; we can con-
clude (2.30).

We will now show the opposite implication. Assume that hf, b, Pj, Pj satisfy (2.30) and
(2.31). Then

Ok, i) = [ 5.0i)aBy+ [ 5.(05)apy
= /h}‘dP’{ —I—/h(’deP’E’; (Equation 2.30)

—

n*hi + (1 —n*)hodP" = /CI,(W*)CZP* (Equation 2.31)

Ry (P, PY)

However, Lemma 14 implies that ©(hg, hy) > R4(Py,P}) for any hg, hi, Py, P;. Therefore,
hg, i must be optimal for © and Pj, P} must be optimal for R.
O

Notably, a similar strategy shows that if (hf, hT) € Sy is a sequence that satisfies 1) and

2) of Lemma 16, then (hg, h}) must be a minimizing sequence for ©.
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A.7 TECHNICAL LEMMAS FROM SECTION 2.6

A.7.1 PROOF OF LEMMA 17

Lemma 133. Let ¢(a) = e=*. Then Cj(n) = 24/n(1 —n) and ay(n) = 1/2log(n/1 —n)
is the unique minimizer of Cy(n, ), with ay(0), au(1) interpreted as —oo, +0o respectively.

Furthermore, 0C},(n) is the singleton 0C;,(n) = {¢(ay(n)) — Y(—ayp(n))}-

Proof. First, one can verify that —oo minimizes Cy (0, @) and oo minimizes Cy (1, «v), and that
Cy;(0) = Cy(1) = 0. To find minimizers of Cy(n,a) for n € (0,1), we solve 9,Cy(n, o) =
—ne~® 4+ (1 — n)e* = 0, resulting in ay(n) = 1/2log(n/1 —n). This formula allows for
computation of Cj(n) via Cj(n) = Cy(n, ay(n)).

Next, by definition

n(an(n)) + (1 —n)(=lay(n)) = Cy(n)  and sp(an(n)) + (1 = s)(=¥(ay(n))) = Cy(s)

for all s € [0,1]. Therefore, 1(cy(n)) — P (—ay(n)) is a supergradient of C}(n) at 7.
The function Cj, is differentiable on (0, 1), and thus the superdifferential is unique on this

set. To show that 9C7 (0), C7 (1) are singletons, it suffices to observe that

od o, . od o,
lim —C7(n) = 400, lim —C}(n) = —oc.

n—0 dn n—1dn
]
A.7.2 PROOF OF LEMMA 18
Lemma 134. Let (an,b,) be a sequence for which a,,b, > 0 and
Nan + (1 =n)b, > Cy(n) for alln € [0, 1] (2.39)
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and

Tim moap + (1= 10)bn = C(10) (2.40)

for some ny. Then lim,,_,o0 an, = Y(ay(no)) and lim,, . by, = P(—aw(no)).

Proof. Recall that on the extended real number line, every subsequence has a convergent
subsequence. We will show that lim, . a, = ¥(ay(no)) and lim, o b, = ¥(—a(10))
by proving that every convergent subsequence of {a,} converges to ¢ (ay, (o)) and every
convergent subsequence of b,, converges to 1 (ay(1o)).

Let a,,, b,, be a convergent subsequences of {a,}, {b,} respectively. (Again, this con-
vergence is in R.) Set a = limy_,o0 @y, b = limy_,o0 by, -

Then (2.39) (2.40) imply that

na + (1 —mn)b > Cj(n) for all n € [0,1]

noa + (1 —n0)b = C;,(m0) (A.19)

These equations imply that a — b € 9C}(10) and thus

a—b=(ay(m)) — P(—ay(mn)) (A.20)

while (A.19) is equivalent to

noa + (1 —n0)b = notb (e (10)) + (1 — mo)(—ay(mo)) (A.21)

The equations (A.20) and (A.21) comprise a system of equations in two variables with a

unique solution for a and b. O
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A.7.3 PROOF OF LEMMA 20

Lastly, we prove Lemma 20.

Lemma 135. Let h, be any sequence of functions. Then the sequence h,, satisfies

hﬁgf Se(hn) > Se(hggg)lf hy) (2.43)
and
lim sup Se(hy,) > Se(limsup h,,) (2.44)
n—oo n—oo

Proof. We start by showing (2.43).
liminf S (h,)(x) = liminf sup h,(x +h) =sup inf sup h,(x + h)
n—00 N0 |p||<e N 12N || <e

> sup sup inf h,(x+h) = sup liminf ~,(x + h) = S(liminf A, )(x)

|h|[<e N n>N |h||<e n—o00 n—00

Equation 2.44 can then be proved by the same argument:

lim sup Sc(hy,)(x) = limsup sup h,(x + h) = inf sup sup h,(x + h)

n—00 n—oo  |[h|<e N n>N ||| <e

> sup inf sup h,(x +h) = sup limsup h,(x + h) = Sc(limsup h,,)(x)

Inj<e N n>N Ihf<e n—oo oo
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B DEFERRED PROOFS FROM

CHAPTER 3

B.1 PROOF OF LEMMA 27

First, the S, operation satisfies a subadditivity property:

Lemma 136. Let S, and Sy be two subsets of RY. Then
56(151) + 56(152) > SE<151052) + 56(151U52> (B1>

Proof. First, notice that

(

0 ifx¢&Sand x ¢SS

56(151)(X> + 56(152)(X) =431 ifxe STASS
(B.2)

2 if x € 95N S8
\

= 1senss (%) + Lseuss ()

Next, one can always swap the order of two maximums but a min-max is always larger
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than a max-min. Therefore:

56(151ﬂ52) + 86(151U52) - Sﬁ(min<1517 152)) + Se(max(lsu 152)) (B 3)

S min(Se(lsl), 56(152)) + maX(Se(lsl), Se(]-Sg)) = ]-SfﬂSE + 13;U5§

Comparing Equation (B.2) and Equation (B.3) results in Equation (B.1). O
Therefore, the adversarial classification risk is sub-additive.

Corollary 137. Let Sy and Sy be any two sets. Then

R(S1 N Sy) + R(S1 U Sy) < RE(S1) + R(Ss)

This result then directly implies Lemma 27:

Proof of Lemma 27. Let A; and As be two adversarial Bayes classifiers, and let RS be the

minimal adversarial Bayes risk. Then Corollary 137 implies that

9RS > R(A; U As) + R(A; N Ay)

and hence A; N Ay and A; U Ay must be adversarial Bayes classifiers as well. O

B.2 COMPLEMENTARY SLACKNESS— PROOF OF
THEOREM 30

The complementary slackness relations of Theorem 30 are a consequence of the minimax
relation of Theorem 29 and properties of the W, metric.
Integrating the maximum of an indicator function over an e-ball is intimately linked to

maximizing an integral over a W, ball of measures:
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Lemma 138. Let Q be a positive measure. Then for any Borel set A

/ S0z s / gl

QeBr(Q

Lemma 5.1 of [52] and Lemma 3 of [25] proved slightly different versions of this result,

so we include a proof here for completeness.

Proof. Let @ be any measure with W (Q,Q’) < € and let v be any coupling between for
which

esssup [|[x —y|| = W (Q, Q).

(x,y)~y

Such a coupling exists by Theorem 2.6 of [33]. Then S¢(14)(x) > 14(y) v-a.e. Thus

/ 5.(14) (x)dQ(x) = / S.(L)X)dy(x,y) > / 1dy(x,y) = / 14(y)dQ(y)

Now taking a supremum over all Q' € B°(Q) concludes the proof. ]
One can prove Theorem 30 with this result.

Proof of Theorem 30.
Forward Direction:
Let A be a minimizer of R¢ and assume that P} € B> (Py), Pi € B*(P;) maximize R.

Then:

RE(A) = / S.(140)dPy + / S.(14)dPy > / 1 40P + / 14dP! (B.4)

= /n*lAch1 + /(1 — ) 14dP; > /C*(n*)dP* = R(P:, PY) (B.5)

The first inequality follows from Lemma 138 while the second inequality follows from the

definition of C* in Equation (3.3). By Theorem 29, the first expression of Equation (B.4)
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and the last expression of Equation (B.5) are equal. Thus all the inequalities above must in
fact be equalities. Thus the fact that the inequality in Equation (B.5) is an equality implies
Equation (3.12). Lemma 138 and the fact that the inequality in Equation (B.4) must be an
equality implies Equation (3.11).

Backward Direction:

Let P§, P be measures satisfying Weo (P§, Po) < €, W (P}, [P1) <€, and let A be a Borel
set. Assume that A, P, and P} satisfy Equation (3.11) and Equation (3.12). We will argue
that A is must be a minimizer of R¢ and P}, P} must maximize R.

First, notice that Theorem 29 implies that R(A’) > R(P},P}) for any Borel A’ and

P, € B> (Py), P} € B>*(P;). Thus if one can show
R(A) = R(P;, P}, (B.6)
then A must minimize R because for any other A’
RY(A") > R(P;,PY) = R(A).

Similarly, one could conclude that P, P} maximize R because for any other Py € B>(Py)
and P} € B>(P,),
R(Py, IPy) < RY(A) = R(P, PY).

Hence it remains to show Equation (B.6). Applying Equation (3.11) followed by Equa-

tion (3.12), one can conclude that

R (A) = /Se(lg)d]P’l—l—/Se(lA)dPg :/lAch’{—I—/lAdIP’S Equation (3.11)

= /77*1,40 + (1 —n")1adP* = /C*(n*)dIP’* = R(P;,P})  Equation (3.12)
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B.3 PROOF OF PROPOSITION 51 AND LEMMA 52

The proof of Proposition 51 relies on Lemma 52.

B.3.1 PROOF OF LEMMA 52

The © operation on sets interacts particularly nicely with Lebesgue measure.
Lemma 139. For any set A and € > 0, 0A° has Lebesgue measure zero.

This result is standard in geometric measure theory, see for instance Lemma 4 in [2] for

a proof. Next, the closure and € operations commute:
Lemma 140. Let A be any set in R?. Then A = A".

Proof. We show the two inclusions A¢ ¢ A° and A¢ D A° separately.

Showing A¢ C A": First, because the direct sum of a closed set and a compact set must
be closed, A is a closed set that contains A¢. Therefore, because A€ is the smallest closed
set containing A€, the set A€ must be contained in A".

Showing A€ O A% Let x € A%, we will show that x € A¢. If x € A¢, then x = a+ h for

some a € A and h € B.(0). Let a; be a sequence of points contained in A that converges to

a. Then a; + h € A¢, and a; + h converges to a + h. Therefore, a +h € A¢. O

Next, this result implies that the sets (int A)¢, A° and A° all have equal Py, measure while

((int A)9)¢, (A%<, and (Zo)6 have equal P;-measure.

Lemma 141. If A is any adversarial Bayes classifier and € > 0, then Po(A) = Py(A°) =
: : —C
Po((int A)€) and P1((A%)) = Py (((int A)9)¢) = P ((A7)9).
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Proof. First, Lemmas 139 and 140 imply that
Py(A°) = Po(A) = Py(A") (B.7)

Furthermore, Py ((A9)¢) > IP’l((ZC)E) and thus R(A) > R¢(A). Consequently, A must be an

adversarial Bayes classifier and

Py((A9)) = Py((A7)) (B-8)
A similar line of reasoning shows that
Py ((A)) = Py((A9)) = Py ((int A)) (B.9)
and thus
Py(A°) = Po((int A)°) (B.10)
Equations (B.7) to (B.10) imply the desired result. O

Finally, Lemma 141 implies that int A, A and A are all equivalent up to degeneracy.

Proof of Lemma 52. Lemma 141 implies that if F is any measurable set with int A ¢ E C A,
then Po(E) = Po(A) and P;((EY)¢) = P ((A9)%). Therefore, F must be an adversarial

Bayes classifier.

B.3.2 PROOF OF PROPOSITION 51

The following lemma show that [tem 2) implies Item 1).
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Lemma 142. Let Ay and Ay be adversarial Bayes classifiers for which either Sc(1a,) =

Se(La,) Po-a.e. or Se(1,0) = Sc(14¢)-Pi-a.e. Then
Se<1A1> = S€(1A2) = Se(lAlﬂAQ) = Se(1A1UA2> ]P’O—a.e. (Bll)

and

SE(]-AlC) = Se(]-Ag> = Se(]-(AlﬂAg)C) = SG(]-(AlLJAQ)C) ]P’l-a.e. (B12)

See Appendix B.3.2.1 for a proof. As a result:

Corollary 143. Let Ay and A be two adversarial Bayes classifiers. Then Se(14,) = Se(1a,)
Po-a.e. iff Se(1ac) = Se(lag) Pi-ae.

Furthermore, the last equality in Equation (B.11) and Equation (B.12) implies that A,
and A, are equivalent up to degeneracy.

This result suffices to prove the equivalence between Item 2) and Item 3), even when P

is not absolutely continuous with respect to Lebesgue measure.

Lemma 144. Let Ay and Ay be two adversarial Bayes classifiers for e > 0, and let (P§, P})
be a mazimizer of R. Define P* = P} + IP}.

The following are equivalent:
2) Either Sc(14,) = Se(1a,)-Po-a.e. or Sc(1,¢) = Se(1,0)-Pr-a.e.
3) P*(AAA)) =0

Proof. Assume that A; and A, are both adversarial Bayes classifiers. Lemma 27 then implies
that A; U Ay, A; N Ay are both adversarial Bayes classifiers. Equation (3.11) of Theorem 30

implies that

/Se(]-AlLJAQ)d]P)O:/1A1UA2d]P(>§:/1A10A2dPS+PS(AIAA2)

:/Se(lAlﬂAg)dPO+P8(A1AA2)
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Because S¢(14,n4,) < Se(1a,04,), PE(A1AAy) = 0is equivalent to Se(1a,na,) = Se(1a,04,)
Py-a.e. Next, Se(1a,na,) = Se(1a,04,) Po-a.e. is equivalent to Sc(14,) = Sc(14,) Po-a.e. by
Lemma 142. Therefore, Corollary 143 implies that Pj(A;AAs) = 0 is equivalent to Item 2).

The same argument implies that Pj(A;AAy) = 0 is equivalent to Item 2). Lastly,
P*(A1AAy) = 0 is equivalent to P§(A1AAs) = 0 and Pi(A;AAy) = 0. O

Next, the equivalence of Item 1) with Item 3) in Proposition 51 is a consequence of

Lemma 141 and an additional result on the € operation.

Lemma 145. Let U be an open set and let Q be the set of rational numbers. Further assume

€>0. ThenUc = (UNQY)* = (UnN (QH%)e.
See Appendix B.3.2.2 for a proof.

Proof of Proposition 51. Lemma 144 states that Item 3) implies Item 2). It remains to show
[tem 2) implies Item 1) and Item 1) implies Item 3).

Item 2) = Item 1): Assume that Item 2) holds; then Corollary 143 implies that both
Se(La,) = Se(1a,) Po-ae. and Se(1yc) = Se(l4¢) Pi-a.e. Lemma 142 implies than any set
A with A; N Ay C A C A U A; satisfies Se(14,) = Se(14) Po-a.e. and Se(lAlc) = Se(1c)
Py-a.e. Therefore R°(A) = R°(A;) so A is also an adversarial Bayes classifier.

Item 1) = Item 3): Assume that for all A satisfying A; N Ay C A C A; U Ay, the set
A is an adversarial Bayes classifier. Define A3 = A1 N Ay, Ay = AU Ay, and D = A1 AAs.
As As U D U AY = R?, the boundary 0D is included in A5 U 0A,.

We split D into four disjoint sets, D; = int DNQ?, Dy = int DN (QYH)® |, D3 = DNODN
0As, and Dy = DNODNOAs— D3. Notice that these four sets satisfy D = Dy LI Dy D3I Dy.
Next, we will prove that each for these four sets has P*-measure zero.

Because D is a degenerate set, the sets A3 U Dy, A3 U Dy, and A3 Uint D are all adver-
sarial Bayes classifiers. However, Lemma 145 implies that D{ = D§ = int D and therefore
Se(Lasup,) = Se(Lasuine p) = Se(Lazup,). Because each of these sets is an adversarial Bayes
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classifier, Equation (3.11) of Theorem 30 implies that P§(AsUD;) = Pj(AsUint D) = P§(AsU
Ds). As Dy and D, are disjoint sets whose union is int D, it follows that P§(int D) = 0. Anal-
ogously, comparing Se(1(4,-p,)c), Se(1a,—py)c), and Sc(1(a,_ins pyc) results in Py (int D) = 0.
Next we argue that P*(D3) = 0. Lemma 141 implies that S.(1a,up,) = Se(14,) Po-a.e.,
and Equation (3.11) of Theorem 30 then implies that P§(As; U Ds) = P§(As). Thus P§(D3) =
0 because Az and Dj are disjoint. Similarly, Lemma 141 implies that Sc(1(a,up,)c) =
Se(Lag_p,) = Se(1a¢) Pr-a.e., and Equation (3.11) of Theorem 30 then implies that Pi(AY —
Ds3) = P;(AY), and thus P;(Ds3) = 0.
Similarly, one can conclude that P*(D,) = 0 by comparing Ay, Ay — Dy, and Ay U Dy.
[

B.3.2.1 PROOF OF LEMMA 142

Proof of Lemma 142. We will assume that Sc(14,) = Sc(14,) Po-a.e., the argument for

Se(Lye) = Se(1a9) Pr-ae. is analogous. If Sc(14,) = Se(14,) Po-a.e., then
Se(]-A1) = HlaX(Se(]_Al), Se<]-A2)) == Se(max(lAl, 1A2)) == SE(]-A1UA2) ]P’O—a.e.

However, S€<1AIC) > Se(1(a,ua,)c). If this inequality were strict on a set of positive P;-
measure, we would have R¢(A; U Ay) < R°(A;) which would contradict the fact that A; is
an adversarial Bayes classifier. Thus Sc(14¢) = Se(1(a,u4,)c) Pi-a.e. The same argument
applied to Ay then shows that Sc(14¢) = Se(L(a,0a,)0) = Se(1ag) Pi-ace.

Now as S¢(1,4¢) = Se(1,¢) Pr-a.e., one can conclude that
Se(lAlc) = Se(lAQC) = maX(Se(lAlc)v SE(1A§)> = SE(I(AmAz)C) Pr-ace.

An analogous argument implies Equation (B.11). O
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B.3.2.2 PROOF OF LEMMA 145

Before proving Lemma 145, we reproduce another useful intermediate result from [2].
Lemma 146. Let a,, be a sequence that approaches a. Then B.(a) C |J —, Be(ay).

Proof. Let y be any point in B.(a) and let § = ||y — a||. Pick n large enough so that

|la—a,|| <e—J. Then

Iy —an] <lla—anf +[ly —al <e=d+d=¢

and thus y € B.(a,). O

Proof of Lemma 145. We will argue that U = (U N Q%)¢, the argument for U N (Q%)¢ is
analogous.

First, U N Q? C U implies that (U N Q%) C U°.

For the opposite containment, let u be a point in U. We will argue that m C (UNQ)~.

Because U is open, there is a ball B,.(u) contained in U. Because Q¢ is dense in R?, for every

y € B,.(u), there is a sequence y,, € Q converging to y. Thus Lemma 146 implies that

B(u) C B,(u)* C (B,(w) N Q") (UNQY

Taking a union over all u € U results in U¢ C (U N Q%)°.
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B.4 PROOF OF THEOREM 34

B.4.1 PROOF OF LEMMA 53

Lemma 24 of [25] show that there exists a function 7 and maximizers P}, P¥ of R for which

optimal attacks on 7) are are given by P, P7:

Proposition 147. There exists a function 1 : R? — [0,1] and measures Py € B>(Py),

Pt € B (Py) with the following properties:

1. Let P* = P{ + P} and n* = dPj/dP*. Then

2. Let v} be a coupling between P; and P} for which ess sup |x —yl|| <e. Then for

x,y)~;

these Py, Py, ) satisfies

L(n)(x) =q(y) ~i-a.e. and S()(x) =7(y) 79-a-e

Recall that Theorem 2.6 of [33] proves that when W, (Q, Q') < ¢, there always exists a
coupling v between Q and Q' with esssup(, )., [|[X — y[| < e

Next, we prove that one can take A; = {f > 1/2} and Ay = {f > 1/2} in Lemma 53.

Proof of Lemma 53. Let P§, P}, 7, and 77 be the measures given by Proposition 147 and
set P* = Py + P} and n* = dPP}/dP*. Let 7 be the function described by Proposition 147.
We will show that the classifiers A, = {f) > 1/2} and Ay = {) > 1/2} satisfy the required
properties by verifying the complementary slackness conditions in Theorem 30.
Below, we verify these conditions for {5} > 1/2}, the argument for {) > 1/2} is analogous.
First, Item 1 of Proposition 147 implies that 1(551/9y = 1512 Pfae. and 15 90 =
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1{ﬁ§1/2} = 177*§1/2 P*-a.e.

Therefore,

N Lgs1yope + (1 =0")gas1/0y = C* (") P-ace.

Next, Item 2 of Proposition 147 implies that 7 assumes its maximum over closed e-balls
Po-a.e. and hence S (1;-1/2)(X) = 1s (ix))>1/2 Po-a.e. Additionally, Item 2 of Proposi-

tion 147 implies that 1g (i)x)>1/2 = liy)>1/2 Vo-a-e. Therefore, one can conclude that

[ 5051 IR0 = [ Liorpdiiey) = [ty (B3
Similarly, using the fact that (7)) (x) = 7j(y) 7i-a.e., one can show that [ S¢(1;<1/2)dP; =
[ 1551 /2dPj. This statement together with Equation (B.13) verifies Equation (3.11). O

The classifiers 1211 and 1212 are minimal and mazimal classifiers in the sense that

/sg(lél)dpo < /55(1/4)651@0 < /56(1A2)d19>0

for any other adversarial Bayes classifier A.

Lemma 148. Let A be any adversarial Bayes classifier and let fll, Ay be the two adversarial

Bayes classifiers of Lemma 53. Then

/56(1A1)d19>0 < /56(1A)d19>0 < /56(1A2)d19>0 (B.14)

and

/S€(1A§)du»1 < /S€(1Ac>d19>1 < /s€<1Alc)d1P>1. (B.15)

Proof. Let P, P}, P*, and n* be as described by Lemma 53. Then the complementary
slackness condition Equation (3.11) implies that [ Sc(14)dPy = [ 14dPf and Equation (3.12)
implies Equation (3.15), and hence [ 1,:51/0dPf < [14dP§ < [ 1,e51,2dPy. Lemma 53
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implies that [1; dPy < [1.dP§ < [1; dP;. The complementary slackness condition
(3.11) applied to A; and A, then implies Equation (B.14).
The fact that [ Se(14c) = RS — [ Se(14)dP for any adversarial Bayes classifier A then

implies Equation (B.15). O

B.4.2 PRrovING THEOREM 34

To start, we prove that Item B) and Item C) are equivalent even when P &« pu:
Proposition 149. The following are equivalent:

B) For all adversarial Bayes classifiers A, either the value of Py(A€) is unique or the value

of P1((AC)¢) is unique

C) There are maximizers P i of R for which P*(n* = 1/2) = 0, where P* = P+ P} and
7" = dPt/dP*

Proof. Item B) = Item C): Assume that Py(AS) = Py(AS) for any two adversarial
Bayes classifiers. Then Lemma 27 implies that Po((A; U A3)¢) = Po((A1 N A2)¢). Then
1ia,ua0)c = 1(a,na,) Po-ace. because (A; N Ap)® C (A3 U Ay)°. As A{ and A5 are strictly

between (A; N Ay)¢ and (A; U Ay)¢, one can conclude that
Se(]-Al) = 1Ai = 1,4; = SE(IAQ) Po—a.e.

Similarly, if P;((AY)¢) = Py((AS)¢) implies Sc(14,) = Sc(14,). Therefore, Item B) implies
Item 2) of Lemma 144. Consequently, Lemma 144 implies that P*(A]_AAQ) = P*(n* =
1/2) = 0, where P%, P* are the measures described by Lemma 53 and A; and A, are the
adversarial Bayes classifiers described by Lemma 53.
Item C) = Ttem B): Assume there is a maximizer (P, P}) of R for which P*(n* =
1/2) = 0, where P* = P§ + P} and n* = dP;/dP*. Then Equation (3.15) must hold, and
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P*(n* = 1/2) = 0 implies that 14 = 1,.51/ P*a.e. for any adversarial Bayes classifier
A. Consequently, 14, = 14, P*-a.e. for any two adversarial Bayes classifiers A;, Ay or
equivalently, P*(A;AAs) = 0. Corollary 143 and Lemma 144 imply that Sc(14,) = Sc(14,)

Po-a.e. and Se(14¢) = Se(14¢) Pr-a.e., which implies Item B). O
Finally, this result together with Proposition 51 implies Theorem 34.

Proof of Theorem 34. Proposition 149 states that Item B) implies Item C). It remains to
show Item A) implies Item B) and Item C) implies Item A).

Item A)=Item B): Assume that the the adversarial Bayes classifier is unique up
to degeneracy. Then Item 2) of Proposition 51 implies that P;(A§) = P;(A5) for any two
adversarial Bayes classifiers A; and As.

Item C) = Item A): Assume that P*(n* = 1/2) = 0 for some (P}, P}) that maximize
R, where P* = Py + P; and n* = dP}/dP*. Then Equation (3.15) implies that 1,.51/2 = 14
P*-a.e. for any adversarial Bayes classifier A. Thus if P*(n* = 1/2) = 0 then 14, = 14,
P§-a.e. for any two adversarial Bayes classifiers Ay, As, or in other words, P*(A4;AAy) = 0.
Item 3) of Proposition 51 then implies that A; and A, are equivalent up to degeneracy. As
these adversarial Bayes classifiers were arbitrary, the adversarial Bayes classifier is unique

up to degeneracy. O]

B.5 MORE ABOUT THE ¢, ¢, AND S, OPERATIONS

This appendix provides a unified exposition of several results relating to the ¢ and —¢
relations—namely Equations (3.16) and (3.17), Lemmas 55, 59 and 60. These results have
all appeared elsewhere in the literature —[2, 16].

The characterizations of the ¢ and ~¢ operations provided by Equation (3.16) and Equa-

tion (3.17) are an essential tool for understanding how ¢ and ~¢ interact.
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Proof of Equation (3.16). To show Equation (3.16), notice that x € A® iff x € B.(a) for

some element a of A. Thus:

x € A° & x € B(a) for some a € A < a € B.(x) for some a € A < B.(x) intersects A

[
Equation (3.17) then follows directly from Equation (3.16):
Proof of Equation (3.17). By Equation (3.16),
x € (A9)° & B.(x) intersects A
Now A€ = ((A%))¢, and so taking compliments of the relation above implies
x € A~ & B,(x) does not intersect A” < B(x) C A
[

Next, Equation (3.16) and Equation (3.17) immediately imply Lemma 59:

Proof of Lemma 59. By Equation (3.16), Equation (3.17), (A°)~¢ is the set of points x for

which B.(x) C A°. For any point a € A, B.(a) C A° and thus A C (A°)~°. Applying this

statement to the set A and then taking compliments results in (A7) C A. O
Lemma 59 then immediately implies Lemma 60:

Proof of Lemma 60. First, Lemma 59 implies that A C (A°)~° and thus A° C ((A°)7°)". At
the same time, Lemma 59 implies that ((A°)™¢)¢ = (<A€> _E>€ C Ac. Therefore, ((A°)~¢)¢ =

A¢. Applying this result to A° and then taking compliments then results in ((A=€)¢)~¢ = A~¢.
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Next, Lemma 59 implies that (A7¢)¢ C A and hence ((A7¢)) C A°. Applying this result

to A® and then taking compliments ((A€)~¢)~¢ D> A~

Lemma 55 is then an immediate consequence of Lemma 60.

B.6 MEASURABILITY

B.6.1 DEFINING THE UNIVERSAL 0-ALGEBRA

Let M (R?) be the set of finite positive measures on the Borel g-algebra B(R?). For a Borel
measure v in M, (R?), let £,(R?) be the completion of B(R?) under v. Then the universal

o-algebra % (R?) is defined as

w®)= () LR

veB(RY)

In other words, % (R?) is the o-algebra of sets which are measurable with respect to the
completion of every finite positive Borel measure v. See [10, Chapter 7] or [45] for more
about this construction.

Due to Theorem 56, throughout this paper, we adopt the convention that f Se(14)dv is

the integral of S.(14) with respect to the completion of v.

B.6.2 PROOF OF THEOREM 57

First, notice that because every Borel set is universally measurable, inf,cgge) R°(A) >
inf 4o (e R¢(A). The opposite inequality relies on a duality statement similar to The-
orem 29, but with the primal minimized over universally measurable sets and the dual

maximized over measures on % (R?).
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For a Borel measure Q, there is a canonical extension to the universal o-algebra called

the universal completion.

Definition 150. The universal completion @ of a Borel Q is the completion of Q restricted

to the universal o-algebra.

Notice that Q(E) = @(E) for any Borel measure Q and Borel set E. As a consequence,

/gd@ = /gd@ for any Borel function g. (B.16)

In addition to the W-ball of Borel measures B°(Q) around Q, one can consider the
W4 ball of universal completions of measures around Q, which we will call gf"(@)

Explicitly, for a Borel measure Q, define

B*(Q) = {Q : Q' € BX(Q)}.

The following result shows that if Q' € B®(Q), then W (Q, Q) < ¢, and thus B=(Q)

contains only measures that are within e of @ in the W, metric.

Lemma 151. Let Q and Q' be Borel measures with W (Q, Q") < € and let @,@’ be their

universal completions. Then W (Q, Q') < e.
Next, to compare the values of R on B>(Py) x B®(P;) and B>(P,) x BX(P;), we show:

Corollary 152. Let Py, Py be two Borel measures and let @0,@1 be their universal comple-

tions. Then R(Py,P1) = R(Py, Py ).

Thus Lemma 151 and Corollary 152 imply that

sip  R(P),P;) = sup R(P),P) (B.17)
P} eB (Py) PpeB (Po)
P! B (P1) P! B2 (Py)
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See Appendix B.6.3 for proofs of Lemma 151 and Corollary 152.

Furthermore,Lemma 138 and Equation (B.16) imply:

Corollary 153. Let Q be a finite positive measure on % (R?). Then for any universally

measurable set A,

/ S.(14)dQ > sup / 1440’
Q)

Q'eBx
See Appendix B.6.3.3 for a proof.
This result implies a weak duality relation between the primal R¢ minimized over % (R?)

and the dual R maximized over B>(Py) x B> (Py):

Lemma 154 (Weak Duality). Let Py, Py be two Borel measures. Then

inf RY(A)> sup R(P,P,
Rz s REE)
Pl eBe (1)
Proof. Let A be any universally measurable set and let P, P| be any measures in B (P,)
and B> (P,) respectively.
Then Corollary 153 implies that

inf R°(A)> inf sup /1Acdﬁ”1 +/1Adﬁ>{]
Ae (R4) A (RY) @66&00 (o)

Pf B (1)

However, because inf-sup is always larger than a sup-inf, one can conclude that

inf RY(A)> sup inf /1Acdﬁ" +/1Adﬁ" = sup R(P)P
actan T By B (po) A% (B 1 " Besren Fo )
Py eB° (P1) Py eB° (P1)

This observation suffices to prove Theorem 57:
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Proof of Theorem 57. First, because every Borel set is universally measurable,

inf R°(A) > inf R(A).
AeB(R?) Acu (RY)

Thus the strong duality result of Theorem 29 and Equation (B.17) imply that

inf RY(A)< inf R(A)= sup RP,P)= sup R(P,)P).
Aew (RY) ) AeB(R?) (4) PeB2° (Po) (Fo. F1) P/ B> (Po) (Fo. 72)
Py eBe(P1) P, B> (Py)

However, the weak duality statement of Lemma 154 implies that the inequality above must

actually be an equality. O

B.6.3 PRroors or LEMMA 151 AND COROLLARIES 152 AND 153

Lemma 7.26 of [10] provides a useful result for translating statements for B(R?) to B(R?).

Lemma 155. The set E is universally measurable iff given any Borel measure Q, there are

Borel sets By, By for which By C E C By and Q(By) = Q(B,).

The proofs of Lemma 151 and Corollaries 152 and 153 all rely on this result.

B.6.3.1 PROOF OF LEMMA 151

Notice that if 7 is a coupling between two Borel measures, esssup(yy)., X — y| < € iff

Y(AY) = 0, where A, is the set defined by
Ac={(x,y) ER!xR?: |x —y| < e} (B.18)

This notation is helpful in the proof of Lemma 151.

Proof of Lemma 151. Let ~y be the Borel coupling between Q and Q' for which ess sup )., [[x—
y|| < €, which exists by Theorem 2.6 of [33]. Let 7 be the completion of v restricted to
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o(% (RY) x % (R?)), the o-algebra generated by % (R?) x % (R?). We will show 7 is the
desired coupling between @ and @’ . Let S be an arbitrary universally measurable set in

R?. Then Lemma 155 states that there are Borel sets E;, B, for which B, C S C E, and

Q(E1) = Q(S) = Q(F2). Then because v and 7 are equal on Borel sets,
QEY) = QE) = 7(Er x RY) =7(E; x RY)
and similarly,

Q(E») = Q(E,) = v(Ez x RY) = F(E, x RY)

Therefore,

QS) = F(Ey x BY) = (B, x RY) = 5( x RY).

Similarly, one can argue

Q'(S) =7(R* x 5)

Therefore, 7 is a coupling between (@ and @’ . Next, recall that esssup(x yy., [x -yl <e
iff v(AC) =0, where A, defined by Equation (B.18).

Therefore, because A, is closed (and thus Borel),
T(AL) =7(AF) =0

Ix —y| < e and thus W (Q, Q') < e. O

Consequently, esssup y)y |

B.6.3.2 PROOF OF COROLLARY 152
Next, we will show:

Lemma 156. Let v, \ be two Borel measures with v < A, and let dv/d\ be the Radon-

Nikodym derivative. Then di/dX\ = dv/d\ X-a.e.
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This result together with Equation (B.16) immediately implies Corollary 152.

Proof. First, if a function g is Borel measurable, (¢7! : (R, B(R)) — (R, B(R?%)), then it
is necessarily universally measurable (¢7! : (R, B(R)) — (R% % (R%))). Thus the Radon-
Nikodym derivative dv/dA is both Borel measurable and universally measurable.

Next, if S € % (R?) then Lemma 155 implies there is a Borel set £ and A-null sets Ny, N,
for which S = E'U N; — N,. Because v is absolutely continuous with respect to A, the sets
N; and N, are null under v as well. Therefore, by the defintion of the Radon-Nikodym

derivative dv/d\ and the fact that [ gd\ = [ gd\ for all Borel functions g,

dv dv ~ dv ~
ﬁS:VE:/—d)\:/—d)\: —d\
(5) (E) 2 dA g dA g dA

Because the Radon-Nikodym derivative is unique A-a.c., it follows that dv/d\ = dv/d\

A-a.e. O

B.6.3.3 PRrooOFr OrF COROLLARY 153

Proof of Corollary 155. Fix a Q' € B>(Q) and assume that Q' = X for some A € B=(Q).

Then Lemma 155 states that there is a Borel set By C A for which
A(B1) = A(B1) = Q'(B1) = Q'(A),

Thus Lemma 138 and Equation (B.16) imply that [15,dQ < [ S.(15,)dQ. Furthermore,

By C A implies S.(15,) < S.(14) and consequently:

/ 1,0 = / 15,0 < / S.(15,)dQ < / 5.(14)dQ

Taking the supremum over all Q' € gf"(@) proves the result.
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B.7 DEFERRED PROOFS FROM SECTION 3.5.3

B.7.1 PROOF OF LEMMA 58

Proof of Lemma 58. Let {D;}3°, be a countable sequence of degenerate sets for an ad-
versarial Bayes classifier A. Then by Proposition 51, one can conclude that S.(14) =
Se(Laup;) = Lacups Po-ae. and Sc(1yc) = Sc(laoup,) = Lacyup: Pr-ae.  for every
i. Countable additivity then implies that S.(14) = Lacuyz, pe = Se(lawyx, p;) Po-a.e.
and Sc(1,0) = Liacyeuy=, pe = Se(Lacuy=, p,)- Therefore, Proposition 51 implies that A,
AU, D;, and A —J;2, D; are all equivalent up to degeneracy. Consequently, | J;=, D; is

a degenerate set. O]

B.7.2 PROOF OF PROPOSITION 62

Lemma 157. Let A be an adversarial Bayes classifier. If C is a connected component of A
with C~¢ = (), then
C°={y € A% : B.(y) intersects C}° (B.19)

If C is a component of AC with C~¢ =0, then

C={y € A: By) intersects C'}* (B.20)

Proof. We will prove Equation (B.19), the argument for Equation (B.20) is analogous. As-
sume that C' is a component of A, Equation (3.16) implies the containment O of Equa-
tion (B.19).

Next, we prove the containment C in Equation (B.19). Specifically, we will show that

for every x € C¢, there is a y € A® for which x € B.(y) and B.(y) intersects C.

To show the opposite containment, we show that for every x € C¢, there is ay € A® for
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which x € B.(y) and B(y) intersects C.

Let x € C. Because C~¢ = (), Equation (3.17) implies that B.(x) is not entirely contained

in C. Thus the set C'U B.(x) is connected and strictly contains C'. Recall that a connected

component of a set A is a maximal connected subset. If B.(x) were entirely contained in A,

C'U B.(x) would be a connected subset of A that strictly contains C', and then C' would not
be a maximal connected subset of A. Therefore, B.(x) contains a point y in A®, and B.(y)
intersects C' at the point x.

Next assume that x € C° but x ¢ C. Then Equation (3.16) states that the ball B(x)
intersects C' at some point z. Consider the line defined by ¢ := {tx+ (1 —t)z: 0 <t < 1}.
Again ¢ is a connected set that intersects C, so £ U C' is connected as well. However, ¢ also
contains a point not in C' and thus if ¢ were entirely contained in A, then C'U ¢ would be a
connected subset of A that strictly contains C'. As C' is a maximal connected subset of A,

the set £ is not entirely contained in A. Let y be any point in A N ¢, then B.(y) intersects

C at the point z and contains x. O]

Proof of Proposition 62. First assume that C' is a connected component of A with C~¢ = ().
We will argue that C' C (A°)~¢ — (A7), and then Corollary 61 will imply that C is a
degenerate set for A.

If C'is a component of A, then C° C A° and thus C C (C¢)~¢ C (A°)~. Next, Equa-
tion (B.19) of Lemma 157 implies that C¢ C (A%)¢ and thus C' C (C€)~¢ C ((A9))~ =
((A=9))°. Therefore, C is disjoint from (A~¢)¢. Consequently, C' is contained in (A¢)~¢ —
(A~€)¢, which is degenerate by Lemma 60.

The argument for a connected component of A is analogous, with Equation (B.20) in
place of Equation (B.19)

As each connected component of A or A is contained in the degenerate set (A€)~¢ —

(A7), it follows that the set in (3.18) is contained in the degenerate set (A°)~¢—(A™¢)c. O
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B.7.3 PROOF OF LEMMA 63

Proof of Lemma 63. We will show that Po(D~¢) = 0, the argument for P; is analogous.
As both A — D and AU D are adversarial Bayes classifiers, Proposition 51 implies that
Py((A—D)UD*) = Py((A— D)) and thus Py(D*—(A— D)) = 0. However, Equation (3.16)

and Equation (3.17) imply that

D¢ — (A — D) = {x: B.(x) intersects D but not A — D}

B.8& PROOF OF THEOREM 35

Proof of Theorem 35. Let A; C Ay be the adversarial Bayes classifiers defined in Lemma 65

with
~ M ~ ~ N _
Alz U(awbl)v Ag: U(éj7fj>
i=m j=n

for which D = 1212 - 1211 is a degenerate set. Then one can write

R=DuU|J(@,b)u U(éi, £) (B.21)

i=m
For each i, define

a; = inf{x : (z, l;l) does not intersect AS'}

b; = sup{z : (@;, x) does not intersect AS}
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and let

~

A=

~

-

)

Notice that (&i,l;i) ) (di,i),-) so that b; — a; > 2e. Similarly, by the definition of the a;
and b;, every interval (b;,d;1) with 4,i + 1 € [m, M] must include some (&;, f;) and thus
b — i1 > 2¢. As AANA C D, the set A is an adversarial Bayes classifier equivalent to A.
Next, we will show that any two intervals (ax, b), (,,b,) are either disjoint or equal.
Assume that (d, b;) and (@, b,) intersect at a point z. By the definition of by, (z,by,) does
not intersect flg and thus l;p > Bk. Reversing the roles of Ep and Ek, one can then conclude

that I;p = l;k One can show that a, = a via a similar argument. Thus we can choose (a;, b;)

be unique disjoint intervals for which

|_|(aw bi) = U (@i, b;)

B.9 DEFERRED PROOFS FROM SECTION 3.6.2

B.9.1 PROOF OF LEMMA 68

First, we show Lemma 68 for intervals near the boundary of supp P.

Lemma 158. Assume P < p and let A = |, (a;,b;) be a regular adversarial Bayes
classifier for radius €. Let y represent any of the a;s or b;s. Let I be an interval for which

suppP C I

o Assume that I = [(,00) or I = [(,r].
Ify € (0 — €, 0+ €| then [{ — €,y] is a degenerate set. If furthermore suppP = I, then
for some 6 > 0, either n=0 orn =1 p-a.e. on [{,{+J].
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o Assume that I = (—oo,r] or I =[{,r].
Ify € [r —€,r+¢€) then [y,r — €| is a degenerate set. If furthermore suppP = I, then

for some 6 > 0, either =0 orn =1 p-a.e. on [r—4,r].

Proof. We will prove the first bullet; the second bullet follows from the first by considering
distributions with densities po(x) = po(—2) and pi(x) = p1(—x).
Assume that some y = q; is in (¢ — €, £ + €], the argument for y = b; is analogous. Then

because A is adversarial Bayes classifier:

a;te a;te a;te
0>R(A)—R(AU[l —¢,a4]) = / pdx — / podx = / p(z)de. (B.22)
¢ ¢ ¢

Consequently, f;ﬁe p1(z)dz = 0 and thus the set AU [¢ — €, a;] must be an adversarial Bayes
classifier as well.
First, we prove that the interval [¢ — €, a;] is a degenerate set. Let Dy, Dy be arbitrary

measurable subsets of [¢ — ¢, a;]. Then
a;+e a;+e a;+e
R (AUD; — Dy) — R (AUl —€,a4)) < / pdx — / podx = / p1(z)dz
¢ ¢ ¢

and this quantity must be zero by Equation (B.22). Therefore, the set AU Dy — D, is an
adversarial Bayes classifier.

Next, we will show that if suppP = I, then n = 0 u-a.e. on a set of positive measure. By
assumption a; > ¢ — e and thus d = a; + ¢ — ¢ > 0. As [(,{ + 6] C suppP, Equation (B.22)

implies that n = 0 p-a.e. on [(,{ + 0]. O

Proof of Lemma 68. Assume that the endpoints of I are dy, ds, so that I = [dy,dy] (Corol-

lary 67 implies that |I| < co). Define an interval J via

/
J = U I
’ .
I degenerate interval
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Because each interval I’ includes I, the interval J can be expressed as a countable union of
intervals of length at least |/| and thus is a degenerate set as well by Lemma 58. The interval
J must be closed because the boundary of every adversarial Bayes classifier is a degenerate set
when P < p. If J N (supp P¢ — int supp P~¢) is nonempty, Lemma 158 implies that n € {0,1}
on a set of positive measure under P. It remains to consider the case J C intsuppP~.
Corollary 67 implies that J has finite length and so one can express J as J = [d3,dy]. Now
if any point {z} in [d3 — €, d3) were a degenerate set, then Lemma 58 and Lemma 64 would
imply that ((JU{z}))~¢ = [z, d4] would be a degenerate interval strictly containing .J, which
would contradict the definition of J. Thus [d3 — €,d3) cannot contain any degenerate sets.
Similarly, if this interval contains both points in A and A%, Corollary 61 and Proposition 62
imply that there would be an interval I’ that strictly contains J. Thus [d3 — €, d3) must be
contained entirely in A or A®. Similarly, (dy,dy + €] must be contained entirely in A or A.

We will analyze the two cases (ds—e¢, ds)], [dy, ds+€) C Aand (ds—e,ds] C A, [dy,ds+e€) C
AC. The cases (ds — €,d3), [dy,dy +€) C A® and (ds — €,d3] C A€, [dy,dy +€) C A are
analogous.

Assume first that (ds — €,ds], [ds,ds +€) C A. Then because J is degenerate and

J¢ C supp P, Corollary 67 implies that |J| < 2¢. Hence one can conclude

da+te dq+e da+e da+e
0=R(A-J)—R(AUJ) = / p(x)dx—/ po(x)dx = / p1(z)dx > / p(z)de.
d d

ds—e 3—€ 3—€ di—e

Thus on the interval [dy — €, ds + €], one can conclude that p;(z) = 0 p-a.e. As [dy,dy] C
int supp P~¢ and dy > d;, one can conclude that [d; — €, dy + €] intersects supp P on an open
set. Thus n(x) = 0 p-a.e. on a set of positive measure.

Next assume that (ds — €,ds] C A, [dy,ds + €) C A®. Again, Corollary 67 implies that
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|I| < 2e. Then:

0=R(AU(JNQ) - (JNQY)) - R(AUJ)

dste ds—e da+e ds+te do—e
2/ p(x)dx — (/ po(x)dx+/ p(:r)d:v) 2/ p1(z)dz 2/ p(z)dx
ds—e ds—e ds—e ds—e di—e

Thus pi(z) =0 on [dy —€,dy — €.
Now [dy,ds] C intsuppP~¢ implies that [d; — €,dy — €], intersects suppP on an open

interval. Thus n(x) = 0 on a set of positive measure. O

B.9.2 PROOF OF THE FOURTH BULLET OF THEOREM 38
The following lemma implies (supp P€)¢ is a degenerate set.
Lemma 159. If A and B¢ are disjoint, then A and B are disjoint.

Proof. We will show the contrapositive of this statement: if A° and B intersect, then A and
B¢ intersect.

If A° an B intersect, then there are a € A, b € B and h € B,(0) for which a4+ h =b

and thus a=b — h € B¢. Thus A and B¢ intersect. O

Next, we argue that the set (suppP€)¢ U 0A is indeed degenerate for any regular adver-

sarial Bayes classifier A. The proof of this result relies on Lemma 139.

Lemma 160. Assume that P < p and let A be a regular adversarial Bayes classifier. Then
the set W U 0A is degenerate for A.

Proof. First, suppP¢ and (suppP¢)¢ are disjoint, so Lemma 159 implies that suppP and
((supp P€)¢)¢) are disjoint. Thus P((suppP€)¢)¢) = 0, and so (suppP€)¢ is a degenerate set.
Next, Lemma 52 implies that W is a degenerate set. Lemma 52 implies that 0A is
a degenerate set. Lastly, Lemma 58 implies that the union of the three sets A, (supp P€),
and O(supp P¢)¢ is a degenerate set. O
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Next, using the fact that (suppP€)¢ is degenerate, one can prove the fourth bullet of

Theorem 38 for regular adversarial Bayes classifiers.

Lemma 161. Assume that P < pu, P(n =0 or 1) =0, and suppP is an interval. Then if D

is a degenerate set for a reqular adversarial Bayes classifier A, then D C (supp P€)¢ U JA.

Proof. Let D be a degenerate set disjoint from W We will show that D C 0A. First,
we use a proof by contradiction to argue that the points in D U JA are strictly greater than
2¢ apart. If 0A and D are both degenerate, Lemma 58 implies that D U 0A is degenerate as
well. For contradiction, assume that z < y are two points in D U0A with y — x < 2¢. Then
Lemma 64 implies that [z,y] C ((D U 0JA)°)~° is a degenerate set as well. This statement
contradicts Lemma 68. Therefore, D U 0A is comprised of points that are at least 2¢ apart.

Next, we will show that a degenerate set cannot include any points in int supp P¢ which
are more than 2e¢ from 0A. Let z be any point in int supp P¢ that is strictly more than 2e

from 0A. Assume first that z € A. Then

RA- () - KW= [ g

—€

However, if z € int supp P then (2 —¢, 2 +¢) ¢ supp P¢ and thus has positive measure under
P. As n(x) > 0 on supp P, one can conclude that R (A — {z}) — R°(A) > 0. Similarly, if
z € AY, then one can show that R (AU {z}) — R(A) > 0. Therefore 2z cannot be in any
degenerate set.

In summary: D U0JA is comprised of points that are at least 2¢ apart, but no more than

2¢ from OA. Therefore, one can conclude that D C 0A. n

Finally, one can extend Lemma 161 to all adversarial Bayes classifiers by comparing the
boundary of a given adversarial Bayes classifier A to the boundary of an equivalent regular

adversarial Bayes classifier A,.
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Proof of the fourth bullet of Theorem 38. Any adversarial Bayes classifier A is equivalent up
to degeneracy to a regular adversarial Bayes classifier A,. Lemma 161 implies that (A,AA)N
int supp P¢ C 9A,Nint supp P¢, where EyAE, = E;NESUE,NEY is the symmetric difference
between two sets. Thus there are disjoint sets S7, 5 C 0A, for which A N intsuppPc =
(A, US; — Sy) NintsuppPe. Because A,, A are unions of intervals of length at least 2e,
then 0A, = J(A, U S; — S3) and consequently, 0A, N intsuppP¢ = 0A N intsuppP¢. This

statement together with Lemma 160 implies the result. O]

B.10 DEFERRED PROOFS FROM SECTION 3.6.3

In this appendix, we adopt the same notational convention as Section 3.6.3 regarding the
a;s and b;s: Namely, when A = Uij\im(ai, b;) is a regular adversarial Bayes classifier, ays4q is
defined to be +oo if M is finite and b,,,_; is defined to be —oco if m is finite.

The following observation will assist in proving the first bullet of Lemma 70.

Lemma 162. Let €5 > €. If R minimizes R but ) minimizes R®, then both R and ()
minimize both R and R.
Simalarly, if 0 minimizes R but R minimizes R, then both R and () minimize both R

and R

Proof. First, assume that R minimizes R and () minimizes R'. The quantities
R(R) = / dPy R(0) = / dP,
R R
are independent of the value of €. Next, notice that R(A) > R (A) for an set A. Therefore,
R2 > R = RO(0) = R*(0),

where RS = infs R°(A). Thus ) also minimizes R. As a result, the sets R and ) achieve
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the same R risk, and so

R(R) = R2(R) = R () = R(0).

Consequently, R is also a minimizer of R.
Next, swapping the roles of Py and P; shows that if () minimizes R and R minimizes

R then R, () minimize both R and R H

Next, recall that Lemma 158 implies that if the an endpoint of an adversarial Bayes
classifier is too close to the boundary of supp P, then that endpoint must be in the boundary

of a degenerate interval. As a result:

Corollary 163. Assume P < p is a measure for which supp P is an interval I, and P(n =
0 or1) =0. Then if A is a reqular adversarial Bayes classifier at radius €, then A has no

finite endpoints in 1¢ — int [~¢.

L bl a2 b2 contained

This result implies in the proof of Lemma 70, one only need consider a;, b;, aj, b;

in [—.

Proof of Lemma 70. We will show that (b},aj,;) N I does not include any non-empty

(a?,0?) N I, the argument for (a

307 ;b)) NI and (aF,b%,,) NI is analogous. Fix an interval

1971 7

2 72 1t 2 712 €1 2 72 €1 €1
(a7, %) and for contradiction, assume that (a3,b5)NI # 0 and (a3,b5)NI* C (b}, a;, ) NI,

First, notice that the assumption n # 0,1 implies that none of the a?s, b?s are in [ —

int I~ due to Corollary 163. Thus because the intersection (a?, b?) N 1! is non-empty, then

either 72 C (a2, b?) or at least one endpoint of (a2,?) is in =,

VAR YRR
If in fact (a3,b7) D I, then (b}, ,,a;) D (a3,b7) must include 1. Thus R (A;) = R ()

while R?(A43) = R2(R). Lemma 162 then implies that R, () are both adversarial Bayes

classifiers for both perturbation sizes €; and ey, which implies the first bullet of Lemma 70.
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Thus, to show the second bullet of Lemma 70, it remains to consider (a?, bf) D 1. As

b? — a5 > 2¢; and the interval (a3,b3) is included in the adversarial Bayes classifier As, it

follows that R¢(As) < R(Ay — (a?,b?)) which implies

3077
a?—‘reg b?—eg b?—&-eg b?-l—ez
/ pdx+/ podx+/ pdx S/ prdx
aifeg a?+62 b?*EQ aifeg
and consequently
b§+62 b?762
/ podz S/ prde. (B.23)
a?—eg ajz-—i-ez

Next, b3 — a3 > 2e; and thus (b7 — (€2 — €1)) — (aF + (2 — €1)) > 2¢;. Notice that

J

(a5 + e — e, b5 — (e2— 1)) NI C (a5,05) NI C (b, aj,) NI

is then a connected component of (A; U (a? 4 (€2 — €1),07 — (€2 — €1))) N I, Therefore,

R (Al) — R (Al U (CL? + € — €1, ? — (62 — 61)))

dij aZ+er b3 —e2 di,;
:/ prdr — / pdx +/ podx —|—/ pdx
Cij Cij CL?+€2 b?_EQ

2]

where ¢; ; = max(b; +e1, a3 + e —2€1) and d; ; = min(a;, , + €1, b5 — €3+ 2¢;). We will now
argue that this quantity is positive, which will contradict the fact that A; is an adversarial
Bayes classifier.

Adding

a?+e2 d;
/ prdx +/ prdz
Ci i b§—62

2
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to both sides of Equation (B.23) implies that

di’j (l]2~+€2 di,]' b?—€2 Ci,j b?+52
/ pidr > / pdx +/ pdx +/ podx +/ P0d$+/ podz
ci Ci s b2—eq a3+te a?—ez di j

57 2,7 J J

CL?—&-EQ diﬂj b?—eg
>/ pd:z:+/ pdx—i—/ podx (B.24)
c b a

2 2
1,9 €2 jtez

We will now prove that this last inequality is in fact strict. First, recall that the interval
(a3,07) does not contain I and thus Corollary 163 implies that at least one of a3, b7 must
be in int /7. Consequently, supp P must contain at least one of a? — € and b? + €. Lastly,

iy — (a5 —€) > 2(e; —€1) > 0 and b7 + € — d;; > 2(e2 — 1) > 0 and thus at least one

of the intervals [a?

1€ cigl, [dm,b? + €] must have positive P-measure. The assumption

P(n = 0 or 1) = 0 implies suppPy = suppP; and consequently one of these intervals must
have positive Pyp-measure.
The strict inequality in Equation (B.24) implies R (A;) — R (AU (a] 4 €2 — €1, b5 — (€2 —

€1)) > 0, which contradicts the fact that A is an adversarial Bayes classifier.

Theorem 39 then directly follows from Lemma 70.

Proof of Theorem 39. The first bullet of Lemma 70 together with the fourth bullet of The-
orem 38 imply that if both @), R are adversarial Bayes classifiers for perturbation size
€;, then either ANJI% = RNI% and ANI% = QNI% or ANI% = N I% and
AcnI% =RNI%. In either case, one can conclude that comp(AN )+ comp(A°NI) =1
and comp(A N I¢) 4+ comp(A° N [) = 1.

Next, assume that for perturbation size €, the sets R, () are not both adversarial Bayes
classifiers. Corollary 163 implies that there are no a3,b7 € I =17, As I~ C I C I** are
all intervals which are connected sets, one can conclude that comp(AyNI) = comp(AyNI)

and comp(AS NT1¢) = comp(AS NI4) . Therefore, it remains to show that comp(A; NI) >
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comp(Ay N I9) and comp(A§ N I) > comp(A§ N ). We will show the statement for

AN I and Ay N 14, the argument for AY N T4 and AS N I is analogous.

Let
M N
Av= b)), A= 5).
i=m j=n

Because I is an interval, the intersections (a;, bj) N I, (b, a3, ;) NI are intervals for

i € [m,M]and j € [n, N|. If the interval (a;, bj )N intersects both the intervals (a3, b7) NI

1771

and (a3, ,,b7,,)NI for some j, then (a;, b;)NI must contain some (b3, a3, ,)NI for some j,
which contradicts Lemma 70. Thus there is at most one interval (a?-, b?) NI for each interval

(a},b}) N I, which implies that comp(A; N I¢) > comp(As N I) = comp(Ay N I2). [

1771

B.11 COMPUTATIONAL DETAILS OF EXAMPLES AND
PROOFS OF PROPOSITIONS 49 AND 50

The following lemma is helpful for verifying the second order necessary conditions for gaus-
sian mixtures.

_(z-p)?

202 Then ¢'(z) = —“HFg(x).

Lemma 164. Let g(z) =

t
V2o €

Proof. The chain rule implies that
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B.11.1 FURTHER DETAILS FROM EXAMPLE 41

It remains to verify two of the claims made in Example 41— namely, 1) that b(e) does
not satisfy the second order necessary condition Equation (3.13b), and 2) Comparing the
adversarial risks of R, (), (a(€), +00) to prove that (a(e), +00) is an adversarial Bayes classifier

iff e < B5E and R, () are adversarial Bayes classifiers iff € > Bk,
1) SHOWING b(€) DOESN’T SATISFY THE SECOND ORDER NECESSARY CONDITION
EQUATION (3.13b)

Due to Lemma 164 the equation Equation (3.13b) reduces to

P (b(e) + ) — ph(b(e) — ) = —2DTET B ) — )+

g

M = b6y + 9

Furthermore, the first order necessary condition py(b(€) — €) — p1(b(€) + €) = 0 implies that

Po(b(e) +€) — py(ble) — €) =

p—l(l;;r J (—(b(e) + € — po) + (b(€) — € — 1)) = %(Mo — pi1 — 2¢)

This quantity is negative due to the assumption p; > pp.

2) COMPARING THE ADVERSARIAL RISKS OF R, (), AND (a(e), +00)

First, notice that R°(()) = R*(R) =

N |+

Thus it suffices to compare the risks of (a(¢€),+00) and R. Let

v 1 t2
O(x) = / me’7dt
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be the cdf of a standard gaussian. Then R((a(e),4+00)) < R(R) iff

a(e)+e +o0 +o00
/ pl(x)dx+/ po(z)dx §/ po(x)dx.

0o a(e)—e —o0
Furthermore, because py and p; are strictly positive the equation above is equivalent to

a(e)+e 1 a(e)—e 1
e 22 dx <

oo 2ro oo 2mo

which is also equivalent to ® (‘L(E)J;;’“) < ® <M) As the function ® is strictly

increasing, this relation is equivalent to the inequality

ale) +e— <a(e)—e—u0

o o

which simplifies as e < #2550, Therefore, (—o0,a(e)) is an adversarial Bayes classifier iff

e < B and R, () are adversarial Bayes classifiers iff ¢ > moke,

B.11.2 FURTHER DETAILS OF EXAMPLE 42

The constant k£ = In % will feature prominently in subsequent calculations, notice that

A

the assumption o> % implies that & < 0. The equation Equation (3.8b) requires solving

%e’(b“)Qﬂ"S = %e’(b’ew%i with solutions Equation (3.14) and

y(e) = T T : (B.25)
oi g

The discriminant is positive as k < 0 and o > o1. However, one can show that y(¢) does not
satisfy the second order necessary condition Equation (3.13b) (see below). Similarly, the only

solution to the necessary conditions Equation (3.8a) and Equation (3.13a) is a(e) = —b(e).
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Thus there are five candidate sets for the adversarial Bayes classifier: (), R, (—oo,b(e)),
(a(€), +o0) and (a(e€),b(e)). Theorem 38 implies that none of these sets could be equivalent
up to degeneracy. By comparing the adversarial classification risks, one can show that
(a(€), b(€)) has the strictly smallest adversarial classification risk from these five options (see
Appendix B.11.2). Therefore, (a(e), b(e)) is the adversarial Bayes classifier for all e.

It remains to verify two of the claims above— namely, 1) that y(¢) does not satisfy the
second order necessary condition Equation (3.13b), and 2) Proving that (a(e€), b(€)) is always

the adversarial Bayes classifier by comparing the risks of (a(e€),b(e), R, 0, (a(e),00), and

(—OO, b(€)>

1) THE POINT y(€) DOES NOT SATISFY THE SECOND ORDER NECESSARY CONDITION

EQuATION (3.13D)

First, notice that

1 o, 1\ 4€2 1 1 2¢
€ ( + ) B3 € ( + )
< = B.26)
y(e) < 1 _ 1 1 _ 1 (B.
p R )

This bound shows that y(e) fails to satisfy the second order necessary condition Equa-

tion (3.13b). One can compute the derivative p} in terms of p; using Lemma 164. Specifically,

pi(r) = —pi(z) and therefore

(3

Phlle) + €)= Pi(y(e) — ) polw) + )+ XL y(0) — o

The first order condition po(y(€) + €) — p1(y(e) — €) = 0 implies

40 = 1001 =@+ (960 (3 = ) ~e 2+ 72 )

oy 0§
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However, Equation (B.26) implies that

i)+ (10 (5= ) —e(Z+ %)) <mlyl9 +9- = <0

Thus, the only solution to first Equation (3.8b) and Equation (3.13b) is b(e).

2) COMPARING THE RISKS OF (a(e€),b(e)), R, 0, (a(e),00), AND (—o00,b(¢))
First, we argue that R ((a(e),o0)) > R ((a(e), b(e)):

400 b(e)+e

po(z) —pl(fv)dx_/b(e)_e pi(e)ds (B.27)

= / po(z +€) — p1(z — €)dx
b(e)

R((a(e), 50)) — R*((ale), be))) = /

b(e)+e

The same calculation that solves for b(e) in Equation (3.14) and y(e¢) in Equation (B.25)
then shows that po(z + €) — p1(z — €) is strictly positive when z > b(e).

Additionally, R¢((a(e), +00)) = R¢((—00, b(€))) because a(e) = —b(e) and py, p; are sym-
metric around zero. Furthermore, by writing out the integrals as in the first line of Equa-
tion (B.27), one can show that R°(R) — R((—o0,b(€))) = R ((a(e),00)) — R((a(e), b(e))).
Thus

R(R) — R*((a(e), b(€))) = 2(R*((a(e), 00)) = R ((ale), b(e))) > O

and hence one can conclude that R((a(e),b(€))) < R¢(R) and R((a(e),b(e))) < R((—o0,b(e))).

Similarly, one can show that

E(0) — R((ale), b(€))) = 2(R*((a(e), 00)) — R((a(e), b(e)))) > 0

and thus R(0) > R((a(e),b(e))).
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B.11.3 PROOF OF LEMMA 43

Lemmas 158 and 160 of Appendix B.9.1 are used in the proof of Lemma 43.

Proof of Lemma 45. Without loss of generality one can assume that A is a union of open
intervals due to Lemma 52.

There is nothing to show if suppP = R.

We now consider smaller support— for concreteness, we will assume that supp P = [¢, c0),
the cases suppP = [¢, r], supp P = (—o0, r] have analogous reasoning.

Let

i* = argmina; — /¢
aZZK

j* =argminb; — ¢
b >0

We will now consider four cases:

D) |6 — ax and a; > { + €; in which case A" = (a;+, +00) N A is the desired

< |- b,

adversarial Bayes classifier

II) |¢ — ai«| < [¢ —bj«| and a;+ < £+ € in which case A" = (—00,a;+] U A is the desired

adversarial Bayes classifier

1) |6 — a;

> [0 — bj«| and bj» > £ + €; in which case A" = (—o00,b;«) U A is the desired

adversarial Bayes classifier

> |0 — bj«| and bj+ < € + € we will show A" = (bj+,00) N A is the desired

adversarial Bayes classifier

We will show Items I) and II), the arguments for Items III) and IV) is analogous.
Item I): First, we argue that A and A’ are equivalent. Lemma 160 implies that (—oo, {—¢]

is a degenerate set. Next, there can be at most one point of OA in [¢ — ¢, ¢] because A is
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regular. By the definition of i,, if there is some point of JA in [¢ — €, £], that point must be
bi*fl-

o If by 1 &[¢ —¢€ /], then A = A — (—o0,l — €] and thus A and A’ are equivalent.

o If by 1 € [{ — ¢, (], then Lemma 158 implies that [¢ — €, b;«_1] is a degenerate set, and

thus A’ = A — ((—o0,f — €] U [l — €,b;+_1]) and consequently A and A’ are equivalent.

Next, we show that A" := (a;,00) N A is a regular set. Because A is regular, the
point a;+ is more than 2¢ from any other boundary point of 0A. As J((a;, +o0) N A) C
(=00, a;+) UOA = A, the point af must be more than 2¢ from any other boundary point
of (a;+, +00) N A. Therefore, A’ is regular.

The assumption a;« > ¢ + € implies that A’ C (¢ + € + J,+00) for some § > 0 and
consequently A" can only have boundary points in (£ + €, +00) = int supp P~¢.

Finally, A" is open as it is the intersection of open sets.

Item II): First, we argue that A and A’ are equivalent. Lemmas 158 and 160 imply
that the sets (—oo, ¢ — €] and [¢ — €, a;+] are degenerate sets for A. Therefore, A and A’ are
equivalent up to degeneracy.

Next, the same argument as Item I) shows that A" = A U (—o0,a;+] is a regular set:
J(AU(—00,a;+]) C OAUI(—00, ;<] = OA. Thus the boundary points of A" must be at least
2¢ apart because A is regular.

Further, the set A’ is open because (—00, a;<| U (a;,bix) = (—00,b;+) and consequently,
A" = (—o00,b;+) U A.

Finally, to show that dA’ C intsuppP~¢, we argue that A’ has no boundary points in
(—00,l + €] = (intsuppP~)¢. As (—o0,bx) C A, the set A’ has no boundary points in
(—00, bx]. However, the interval (—oo, by] contains (—oo, £ + €] as by« — a;» > 2¢ because A

is regular. O]
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B.11.4 EXAMPLE 45 DETAILS

Theorem 37 implies that when e < 1/2 the candidate solutions for the a;, b; are [—¢, e]U{—1—
€, —1+¢,1—¢e,1+¢}. However, Lemma 43 implies that one only needs to consider points a;, b;
in [—¢, €] when identifying adversarial Bayes classifiers under equivalence up to degeneracy.
However, R((y,o0)) < R((—o0,y)) for any y € [—¢,¢€| because pi(z) > po(x) for z > €
while py(z) — po(x) < 0 for any x < —e. Thus, the candidate sets for the adversarial Bayes
classifier are R, (), and (y,00) for any y € [—¢,€]. Next, any point y € [—¢, €| achieves the
same risk: R°((y,00)) = € + (1 — €) while R*(R) = R*(0) = 1/2. Thus (), R are adversarial
Bayes classifiers when € € [1/3,1/2) and (y, c0) is an adversarial Bayes classifier only when
e < 1/3. Thus Theorem 39 implies that (y,00) is an adversarial Bayes classifier for any

y € [—¢, €| iff e < 1/3 while R, () are adversarial Bayes classifiers iff € > 1/3.

B.11.5 EXAMPLE 46 DETAILS

It remains to compare the adversarial risks of all sets whose boundary is included in {—1/4+
€,1/4 + €} for all e > 0. As points in the boundary of a regular adversarial Bayes classifier
must be more than 2¢ apart, the boundary of a regular adversarial Bayes classifier can include
at most one of {—1 — €, —1 + ¢} and at most one of {3 — ¢, 1 +¢}. Let S be the set of open
sets with at most one boundary point in {—}l — €, —i + €}, at most one boundary point in
{;11 — €, ;11 + €}, and no other boundary points.

Instead of explicitly computing the adversarial risk of each set in S, we will rule out
most combinations by understanding properties of such sets, and then comparing to the
adversarial risk of R, for which R°(R) = 1/10 for all possible e. We consider three separate

cases:
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When € > 1/4: If a set A includes at least one endpoint in int supp P~¢, then

R(A) 22 inf pla) > T > 5= R(R)

- rEsupp P 10

The only two sets in S that have no endpoints in int supp P~¢ are R and (), but R¢(()) = 9/10.
Thus if € > 1/4, then R is an adversarial Bayes classifier, and this classifier is unique up to
degeneracy.
When 1/8 < e < 1/4: If either 1/4 + ¢, —1/4 — € are in the boundary of a set A, then
y+e 3 3
R(A) > / p(r)dr = = - 2¢ > — > R(R).
e 5 20
(The value y above is either 1/4 4+ € or —1/4 — €.) Consequently, for these values of ¢, only
sets in S with at most one endpoint in {—1/4 + €} and at most one endpoint in {1/4 — €}

can be adversarial Bayes classifiers.

Next, if a set A in S excludes either (—oo, —1/4) or (1/4,00), then

Re(A) > /S pilade > 22 > R(R).

(The set S above represents either (—oo, —1/4) or (1/4,00).) As a result, such a set cannot
be an adversarial Bayes classifier.

However, R and (—oo,—1/4 + €) U (1/4 — ¢,00) are the only two sets in & with at
most one endpoint in {—1/4 + €} and at most one endpoint in {1/4 — €}, that include
(—o0,—1/4) U (1/4,00). The set (—oo, —1/4 +€) U (1/4 — €,00) is not a regular set when
€ > 1/8. Consequently, When € € (1/8,1/4], the set R is an adversarial Bayes classifier, and

this classifier is unique up to degeneracy.
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When € < 1/8: First, if A excludes [-1 —¢,—1/4 —¢€) or (1/4+¢,1+ €], then

There are only five sets in S that satisfy this requirement: A; = (—oo, —1/44€)U(1/4—¢€, 00),
Ay = (—OO, _1/4_€)U(1/4_67 OO)? A3 = <_007 _1/4+6)U(1/4+67 OO), Ay = (—OO, _1/4_

€)U(1/44€,00), and A5 = R. All of these sets are regular when € < 1/8. One can compute:

4 8 6
R(A) = 2 R (Ag) = R(As) = < and R(Ay) = Ze
Of these five alternatives, the set A; has the strictly smallest risk when e € (0,1/8). Conse-
quently, when € € (0,1/8), the set A; is the adversarial Bayes classifier and is unique up to

degeneracy.

B.11.6 PROOF OF PROPOSITION 49

Proof of Proposition 49. Due to Theorem 35 and Lemma 43, any adversarial Bayes classifier
is equivalent up to degeneracy to a regular adversarial Bayes classifier A = Uﬁ\im(ai, b;) for
which all the finite a; and b; are contained in int supp P~¢. Consequently, if there is some a;
or b; in int supp P~¢, then e < |supp P|/2.
For every point x in int supp P~¢, the densities py and p, are both continuous at x — €
and x + €. Consequently, the necessary conditions Equation (3.8) reduce to
na+e)=1—-n(a—ce) (B.28a) nb—e)=1—nb+e) (B.28Db)
on this set. If a is more than € away from a point z satisfying n(z) = 1/2, the continuity
of n implies that n(a + €),n(a — €) are either both strictly larger than 1/2 or strictly smaller
than 1/2, and thus a would not satisfy Equation (B.28a). As a result, every a; must be
within € of a solution to n(z) = 1/2. An analogous argument shows that the same holds for
solutions to Equation (B.28b). O
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B.11.7 PROOF OF PROPOSITION 50

Proof of Proposition 50. Due to Theorem 35 and Lemma 43, any adversarial Bayes classifier
is equivalent up to degeneracy to a regular adversarial Bayes classifier A = Uij\im(ai, b;) for
which all the finite a; and b; are contained in int supp P~¢. Consequently, if there is some a;
or b; in int supp P¢, then € < |suppP|/2.

For contradiction, assume that a; is not within € of any point in 9{n = 1}. Then for some
r > 0, n is either identically 1 or identically 0 on (a;(€) —e—r, a;(€)+€e+7) and thus p; = pn is
continuous on this set. Furthermore, because a; € int supp P~ but € < | supp P|/2, pi(a; +¢)
is strictly positive while py(a; —€) = 0. Consequently, a(e) cannot satisfy the necessary

condition Equation (3.8a), thus contradicting Theorem 37. O

B.11.8 EXAMPLE 69 DETAILS

It remains to compare the risks of all regular sets with endpoints in {—%, —ge, —%e, —%6, —i—%e,
—l—%e,%—%e,%—%e}, and show that R is indeed an adversarial Bayes classifier. Rather than
explicitly writing out all such sets and computing their adversarial risks, we show that one
need not consider certain sets in S because if they were adversarial Bayes classifiers, they
would be equivalent up to degeneracy to other sets in S.

First, Lemma 158 with I = [—ge, —l—ge] implies that if A is a regular adversarial Bayes
classifier and y € {—%e, -3¢, —%e} isin OA, then [—ge, y| is a degenerate set. Thus there is no
need to consider classifiers with endpoints in {—%e, —ge, —%e} when identifying all possible
adversarial Bayes classifiers under equivalence up to degeneracy. Similarly, Lemma 158 also
implies that there is no need to consider {—I—%e, —I—ge, +%e} as possible values of the a;s or
b;s. Thus it remains to compare the risks of regular sets whose boundary is contained in
{—%e, —%e}. As points in the boundary of a regular set are at least 2¢ apart, one can rule

out sets with more than one boundary point in {—%e, —|—%€}.
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Consequently, it remains to compare the adversarial risks of six sets: R, (), (—%e, +00),

(—00, —3€), (+3€,+00), and (—o0, +3¢). The adversarial risks of these sets are:

14 11

() (o) -

rnp) () -2

Therefore, the set (—oo,

—%e) is an adversarial Bayes classifier.
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C DEFERRED PROOFS FROM

CHAPTER 4

C.1 AN ALTERNATIVE CHARACTERIZATION OF
CONSISTENCY— PROOF OF PROPOSITION 71

First, prior work computes the minimum standard ¢-risk.

Lemma 165. Let ¢ be any monotonic loss function. Then

it | Ro(f) = [ Colaap

f measurable

This result appears on page 4 of [8]. Notice that Lemma 165 is Theorem 78 with € = 0.

Next, one can use the following lemma to compare minimizing sequences of Cy(n,-) and

0(777 )

Lemma 166. Assume that Assumption 2 holds, ¢ is consistent, and 0 € argmin Cy(n, ).

Then n =1/2.

Proof. Consider a distribution for which 7(x) = 7 is constant. Then Ry(f) = Cy(n, f) and
R(f) = C(n, f). The consistency of ¢ implies that if 0 minimizes Cy(n, -), then it also must
minimize C(n,-) and therefore n < 1/2.
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However, notice that Cy(n,a) = C4(1 —n, —«). Thus if 0 minimizes Cy(7n,-) it must
also minimize Cg(1 —7,-). The consistency of ¢ then implies that 1 —n < 1/2 as well and

consequently, n = 1/2. O]

We use this result to prove Proposition 71 together with a standard argument from

analysis:

Lemma 167. Let {a,} be a sequence in RU {oo}. Then the following are equivalent:
1) lim, . a, =a
2) Every subsequence {an,} of {an} has a subsequence {a;, } for which limy_,o a;, = a
As a result:

Corollary 168. If every minimizing sequence f, of Ry has a subsequence f,, that minimizes

R, then ¢ is consistent.

Furthermore, this corollary can be applied to a distribution with constant 7(x) to con-

clude:

Corollary 169. If every minimizing sequence o, for Cy(n,-) has a subsequence o, that
minimizes C(n,-) then one can conclude that every minimizing sequence is of Cy(n,-) is also

a minimizing sequence of C(n,-).
We now prove a result slightly stronger than Proposition 71.
Theorem 170. The following are equivalent:

1) For all distributions, f, is a minimizing sequence of Ry implies that f, is a minimizing

sequence of R.

2) Foralln € [0,1], o, is a minimizing sequence of Cy(n, -) implies that o, is a minimizing
sequence of C'(n,-).
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3) Every minimizer of Cy(n,-) is also a minimizer of C(n,-).
4) Every minimizer of Ry is a minimizer of R
The proof is essentially the “pointwise” argument discussed in Section 4.3.

Proof. We show that 1) < 2), 2) < 3), and 3) < 4).

Showing 1) is equivalent to 2):

To show that 1) implies 2), consider a distribution for which n(x) = 7 is constant.

For the other direction, let f,, be any minimizing sequence of R4. Then Cy(n, f.) > Cj(n)
and Lemma 165 implies that the sequence Cy(7, f,) actually converges to Cj(n) in L'(P).
Thus one can pick a subsequence f,,, for which Cy(n), f,,) converges to Cj(n) P-a.e. (See for
instance Corollary 2.32 of [22]). Then 2) implies that the function sequence f,; minimizes

C(nm,-) and therefore it also minimizes R by Corollary 168.

Showing 2) is equivalent to 3):

To show that 2) implies 3), notice that if o is a minimizer of Cy(1, -), 2) immediately implies
that the sequence «,, = « also minimizes C(n, ).

For the other direction, assume that every minimizer of Cy(n,-) is also a minimizer of
C(n,-). Let a,, be a minimizing sequence of Cy(n,-). Over the extended real numbers R,
oy, has a subsequence a,,; that converges to a limit point a, which must be a minimizer of
Cy(n,-). Now if a # 0, both 1,<¢, 1,50 are continuous at a so that one can conclude that
0y, also minimizes C(n,-). If in fact @ = 0, Lemma 166 implies that 7 = 1/2 and thus any

a minimizes C(1/2,-). Thus Corollary 169 implies that «,, minimizes C (7, -).
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Showing 3) is equivalent to 4)

To show that 4) implies 3), consider a distribution for which n(x) = 7 is constant.
For the other direction, let f* be a minimizer of Rg. Then Cy(n(x), f*(x)) > Cj(n(x)) but
Ry(f*) = [ C4(n)dP by Lemma 165. Therefore Cy(n(x), f*(x)) = Cj(n(x)) P-a.e. Item 3)

then implies the result. O

C.2 MINIMIZING R; OVER REAL VALUED FUNCTIONS

In this appendix, we will show

Lemma 171. Let R be defined as in (4.7). Then

inf Ry(f)=  inf R
f lBorel, d)(f) f }30?”617 ¢<f)
f R-valued f R-valued

Integrals of functions assuming values in R U {oo} can still be defined using standard
measure theory, see for instance [22].
Recall that [25] originally proved their minimax result for R-valued functions and thus

this lemma is essential for the statement of Theorem 78.

Proof of Lemma 171. Let f be an R-valued function for with Rg(f) < oo. We will show that
the truncation fy = min(max(f, —N), N) satisfies limy o R5(fn) = R5(f). Lemma 171
then follows from this statement.

Define a function oy, : R — [a, b] by

Ol (@)

I
Q
Q
m
B}
=




Notice that o (=) = =0 —a(a). Thus if a = —b, then o[, is anti-symmetric. Further-

more, because ¢ is continuous and non-increasing, for any function g,

$(010,)(9)) = o) 0(a)) ($(9))
and as o[ () is continuous and non-decreasing,
Se(070.)(9)) = a1 (Se(9))
Now let fv = o_n.n)(f). Then S.(¢0 fn), Sc(é0 —f) satisfy
Se(@(fn)) = oy e-mj(Se(@ 0 ), Se(d(=fn)) = o) p(-m) (Se(d © =)

Therefore, Sc(¢po fn) ,Sc(po— fn) converge pointwise to Sc(pof), Sc(po—f). Furthermore,
for N > 1, ¢(fn) < ¢(f) + ¢(1) which is integrable with respect to P;. Similarly, ¢(—fn) <
d(—f) + (1) which is integrable with respect to Py. Therefore, the dominated convergence

theorem implies that

lim Ry (fx) = Ry(f)
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C.3 FURTHER PROPERTIES OF ADVERSARIALLY
CONSISTENT LOSSES— PROOFS OF LEMMA 75,
LEMMA 81, AND PROPOSITION 74

Recall the condition C}(1/2) < ¢(0) implies that minimizers of Cys(1/2, ) are bounded away
from zero. Lemma 172 states that this property actually holds for all n. To prove this fact,
we decompose Cyg(n, ) into Cy(1/2, ) and a monotonic function:

Co(n, @) = ng(a) + (1 = n)p(—a) = (n = 1/2)(d(a) — d(—a)) + %(d)(&) +¢(=a)). (C1)

Lemma 172. Assume that C}(1/2) < $(0). Then there exists an a > 0 for which |a| < a

implies Cy(n, ) # Ci(n) for all n. This a satisfies ¢(a) < ¢(0).

Proof. Let S be the set of non-negative minimizers of C,(1/2, -) and define @ = inf S. Because
¢ is continuous, a is also a minimizer of Cy(1/2,-) and thus Cy(1/2,a) = C;3(1/2) < ¢(0) =
C4(1/2,0). Therefore, ¢(a) < ¢(0) follows from the fact that ¢(—a) > ¢(0).

We will now show that Cg(n,-) does not achieve its optimum on (—a,a) for any 7.
First, this statement holds for n = 1/2 due to the definition of a. Next, we will assume
that n > 1/2, the case n < 1/2 is analogous. To start, we can decompose the quantity
Cy(n, ) asin (C.1). Subsequently, because a is the smallest positive minimizer of Cy(1/2,-),
1/2(¢(a) + ¢(—a)) assumes its infimum over [—a,a] only at —a and a. Next, notice that
¢(a) — ¢(—a) is non-increasing on |[—a,al. Furthermore, because ¢(a) < ¢(0), one can
conclude that ¢(—a) — ¢(a) > 0 > ¢(a) — ¢(—a), and thus the function a — ¢(a) — ¢(—a)
is non-constant on [—a, a|. Therefore, (C.1) achieves its optimum over [—a, a] only at o = a.

Thus, any a € (—a,a) cannot be a minimizer of Cy(n,-) because Cy(n, ) > Cy(n,a) >

Ci(n).
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Proof of Lemma 75. Lemma 172 (above) immediately implies the forward direction.

For the backwards direction, note that if there is an a for which |a*| > a for any minimizer
Cy(n,-) for all n, then 0 does not minimize Cy(1/2,-). Therefore C}(1/2) < Cy(1/2,0) =
¢(0).

O

Proof of Proposition 74. We will argue that for each 7, every minimizer of Cy(n,-) over R
is also a minimizer of C(n,-). Proposition 71 will then imply that ¢ is consistent. To start,
notice that every « is a minimizer of C(1/2,-). Next, we will show that for n > 1/2, every
minimizer of Cy(1, -) is also a minimizer of C(n,-). The argument for n < 1/2 is analogous.

Consider the decomposition of Cy(n, @) in (C.1). Let a be as in Lemma 172 and notice
that if & > a then ¢(a) < ¢(—a). Hence as n > 1/2, then Cy(n, a) < Cy(n, —cr). Further-
more, Lemma 172 implies that there is no minimizer to Cy(7,-) in (—a,a) and thus every
minimizer to Cy(7,-) must be strictly positive. Therefore, every minimizer of Cy(n,-) also

minimizes C(7, -).

Next, Lemma 81 is a quantitative version of Lemma 172.

Proof of Lemma 81. Let a be as in Lemma 172 and define ¢~ by

¢~ (y) = sup{a : ¢(a) > y}.

The function ¢~ is the right inverse of ¢— this function satisfies ¢(¢p~(y)) = y while

¢~ (9()) = a.
Set k= 1/2(¢(0) + ¢(a)), c = ¢~ (k) = sup{a: ¢(a) > k}. From the definition of ¢, one

can conclude that o > ¢ implies that ¢(a) < ¢(c).
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Because ¢(a) < k = ¢(c) < ¢(0) and ¢ is non-increasing, 0 < ¢ < a. Thus [—¢, ] C
(—a,a) and Lemma 172 implies that for all & € [—c,c] and 5 € [0, 1], Cy(n, a) — Cj(n) >0
As this expression is jointly continuous in the variables 7, a and [—¢, ¢] x [0, 1] is compact,

one can define

0= inf Cy(n,a)—Cgn)

a€l—c (]
n€l0,1]

and then it holds that 6 > 0 and Cy(n, ) > Cj(n) + 0 for all a € [—c,d].

C.4 OpPTIMAL TRANSPORT FACTS— PROOF OF LEMMA 76

Proof of Lemma 76. Let Q' be any measure with W, (Q',Q) < e. Let v be a coupling

with marginals Q and Q" for which esssup |x — y|| < e. Such a coupling exists by

xy~'y|

Theorem 2.6 of [33]. This measure v is supported on A, = {(x,y): ||x — y|| < €}. Then

/ gdQ' = / "dy(x,X) / 9(x) L x| <edry(x, X7)

< / Su(9) (%) L xj<edy(x, %) = / 5.(9)X)d(x, %) = / 5.(9)dQ

C.5 PROOF OF THEOREM 77

As observed in Section 4.5, the p-margin loss satisfies I (f) > R*(f) while C§ (n) = C*(n).

Theorem 78 then implies that

sup  R(P),P;) = sup Ry, (Ph,P,) = inf RS (f) > inf RY(f)
PoeB (Po) P} eB>(Py) f P f
P} eB (1) P, eB(Py)
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The opposite inequality follows from swapping an inf and a sup— a form of weak duality.
We prove this weak duality for R = R U {—o00, +-00}-valued functions in order to later apply

a result from [25] which is also stated for R-valued functions.

Lemma 173 (Weak Duality). Let R be the adversarial classification loss. Then

inf R(f)> swp R(E,P) (€2)
fiBm"el, PBGBSO (IP())
f R-valued P, eB2° (P1)

Proof. Notice that Lemma 76 implies that for any function g,

/ Se(g)dQ > sup / gdQ'".
Q' eBx(Q)

Applying this inequality to the functions 1<, 150 in the expression for R(f) results in

/S€(1f<0)dP1+/S€(1f>o)dpo Z sup /1f>0d]P/1+/1f<0dP/0
PLeB (Po)
IPIIEBSO(Pl)

Thus by swapping the inf and the sup and defining P’ = P} + P}, ¥ = dP}/dP,

f%lfl /Se(lfgo)dlpl—i-/Sﬁ(lf>0)dP0 Z inf sup /1f§0dPI1+/1f>0dP6
ore Po)

f f Borel pr 1 €B2(
f R-valued f R-valued IP” €B>=(Py)

> sup inf / 15<odP) + / 1-0dP,
]1])/ eBoo (PO) f Borel -
IP” 1 eBX(P1) f R-valued

= sup inf / C(n/, f)dP' >  sup / C*(n)dP' =  sup R(P,,P))
Py eBx (Py) [ Borel P} eB (Py) P} eB (o)
P/ EBW(Pl)vaalued ]P;leBoo Pl) P/EBOQ(]Pl)

O
Strong duality and existence of maximizers/minimizers then follows from weak duality.

Proof of Theorem 77. Let ¢,(a) be the ¢-margin loss ¢, = min(1, max(1—a/p,0)). Then as
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discussed in Section 4.5, one can bound the adversarial classification risk R°(f) by R°(f) <
R (f) but CF (n) = C*(n) and thus R,, = R.

The minimax theorem for surrogate losses in [25] (Theorem 6) states that there is an
R-valued function f*, and measures P%, Pt for which R’y (f7) = Ry, (P5,Pt). Thus weak

duality (Lemma 173) implies

Ry, (PG, PY) = R(P5,P]) < RE(f) < R, (f7).

However, the fact that 1§ (f*) = R, (P, Py) implies that the inequalities above must actu-
ally be equalities. This relation proves strong duality for the adversarial classification risk
(Equation 4.9) and that f* minimizes R¢ and (P, P}) maximizes R over BX(PPy) x B>(P;).

Next, let f = min(1, max(f,—1)). Then f is R-valued and R¢(f) = R*(f*). Thus f is

an R-valued minimizer of R¢. OJ

C.6 PROOF OF LEMMA 82
Proof of Lemma 82. Lemma 76 implies that for each n,
/Se(lfnq))d]P’l > /1fn<0d]P”f .
Therefore, writing ¢, = [ Sc(14,<0)dPy and r, = [ 1, <odP;, we have
liminfr, <liminf /¢, <limsup¥, . (C.3)
n—00 n—00 n—c0
Therefore, (4.20) implies both that that the limit lim, . [ Se(1y,<0)dP; exists and that

n—oo - n—oo -
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Similarly, because limsup,,_,. ¢, > limsup,,_,. 7, > liminf, . r,, the relation (4.20)
implies that the limit lim, ,o [ 17, <odP; exists. The first relation of (4.18) then follows
from (C.4) and the existence of the limit of [ 1 <odP}.

An analogous argument shows that (4.21) implies the second relation of (4.18). O
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D DEFERRED PROOFS FROM

CHAPTER 5

D.1 PROOF OrF LEMMA 85

Lemma 174. The smallest minimizer of Cy(n,-) is well-defined.

Proof. First, define
ay(n) = inf{a € R : a is a minimizer of Cy(),-)}
This infimum exists because R is closed. Furthermore, the value ag4(n) is a minimizer of
Cy(n, ) because the loss ¢ is continuous. O
The next result implies that «y is non-decreasing.

Lemma 175. If o is any minimizer of Cyg(nz,-) and ne > my, then ay(n) < ab.

Proof. One can express Cy(n2, ) as

Cy(n2, @) = Cy(ni, @) + (2 — m)(d(a) — ¢(—a))

Notice that the function o — ¢(a) — ¢(—a) is non-increasing in o. As ay(n;) is the small-
est minimizer of Cy(n1,-), if o < ag(m) then Cy(n, o) > Cj(m) and thus Cy(ne, ) >
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Cs(n2, ap(m1)). Thus every minimizer of Cy (12, -) must be greater than or equal to as(n;). O

Proof of Lemma 85. Lemma 174 proves that ay is well-defined. For 7, > 7;, Lemma 175

with the choice aj = a(n2) proves that the function a, is non-decreasing.

D.2 PROOF or LEMMA 92

Proof of Lemma 92. Let Q' be a measure in B>X(Q), and let 4* be a coupling between these

two measures supported on A.. Then if (x,x") € A, then x’ € B.(x) and thus S.(1g)(x) >

1p(x") v*-a.e. Consequently,

/ S.(1)(x)dQ; = / S.(1) (x)d (x, %) > / 1p(x)d (x, %) = / 1pdQY

Taking a supremum over all Q" € BX(Q) proves the result.

D.3 PROOF OF THEOREM 87

We prove that the sets {7 > 1/2} and {f) > 1/2} minimize Rj by showing that R ({n >

1/2) = R(P§, Py) for the measures P§, P} in Theorem 95.

Proposition 176. Let 1) be the function in Theorem 86. Then the sets {f > 1/2}, n > 1/2}

are both Bayes classifiers.

Proof. We prove the statement for {7 > 1/2}, the argument for the set {5 > 1/2} is
analogous.
Let P§, P} be the measures of Theorem 95 and set P* = P + Py, n* = dP;/dP*. Further-

more, let v, 77 be the couplings between Py, P§ and Py, P} supported on A..
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First, Item IT) implies that the function 7(x) assumes its infimum on an ball B,(x) 7;-a.e.
and therefore Sc(1pp51/910)(X) = Lir (3)x)>1/23¢ Vi-a.e. (Recall the notation /. was defined
in Equation (5.11).) Item IT) further implies that 1;; 5)x)>1/25¢ = lgx)>1/23c Vi-a.e. and
consequently,

Se(Lnp>1/230)(X) = Lineys1/230 Vi-ace. (D.1)

An analogous argument shows
Se(l{ﬁ>1/2})(x) = l{ﬁ(x/)>1/2} yg—a.e. (DZ)
Equations (D.1) and (D.2) then imply that

R({n>1/2}) = /1{f;(x/)>1/z}cd%k +/1{ﬁ(x')>1/2}d73

= / Linny>1/2y0dPy + / Lix)>1/23dPG = / C(n*, Lgs1y2y)dP™.

Next Item I) of Theorem 95 implies that 7(x’) = n*(x’) P*-a.e. and consequently

R (> 1/2)) = [ OO Lo o) P = RP B,
Therefore, the strong duality result in Theorem 93 implies that {#) > 1/2} must minimize
Re. ]

Finally, the complementary slackness conditions from [23, Theorem 2.4] characterize
minimizers of R¢ and maximizers of R, and this characterization proves Equations (5.9)

and (5.10). Verifying these conditions would be another method of proving Proposition 176.

Theorem 177. The set A is a minimizer of R and (P4, P}) is a mazimizer of R over the

W balls around Py and Py iff W (P§, Po) <€, Woo(P},Py) <€, and
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1)
/ S.(140)dP; = / 1,cdP: and / S.(14)dPy = / 14dP? (D.3)

2)
Cn*,14(X)) = C*(n* (X)) P*-a.e. (D.4)

where P* = P§ + P and n* = dP} /dP*.

Let 75, i be couplings between Py, P§ and P, P} supported on A.. Notice that be-
cause Lemma 92 implies that 14c(x') < Sc(140)(x) 7i-a.e. and 14(x) < Se(14)(x), the

complementary slackness condition in Equation (D.3) is equivalent to
Se(140)(x) = 140(X') Aj-ae. and S (14)(x) = 14(x") g-ae. (D.5)

This observation completes the proof of Theorem &87.

Proof of Theorem 87. First, Proposition 176 proves that the sets {f) > 1/2} and {n > 1/2}
are in fact adversarial Bayes classifiers.

Next, let 7, Pj, P; be the function and measures of Theorem 95. Let P* = P + P,
n* = dPt/dP*, and let 7, 1 be couplings between Py, P§ and Py, P} supported on A.. If
A is any adversarial Bayes classifier, the complementary slackness condition Equation (D.4)

implies that 1,51/ <14 < 1,051/2 P*-a.e. Thus Item I) implies that

Liis12y (X)) < 14(X) < Lpsryy(x)  Ag-ace.

and

Ligs1/ope (x) < Lo (x) < Loympe (X)) i-ace.

The complementary slackness condition Equation (D.5) then implies Equations (5.9) and (5.10).
0
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D.4 PROOF OF THEOREM 97

Theorem 3.4 of [23] proves the following result:

Theorem 178. Assume that P is absolutely continuous with respect to Lebesque measure.

Then the following are equivalent:
1) The adversarial Bayes classifier is unique up to degeneracy

2) Amongst all adversarial Bayes classifiers A, the value of [ Sc(14)dPy is unique or the

value of [ Se(14c)dPy is unique

Thus it remains to show that Item 2) of Theorem 178 is equivalent to Item B) of Theo-

rem 97. We will apply the complementary slackness conditions of Theorem 177.

Proof of Theorem 97. Let P§, P} be the measures of Theorem 95.
First, we show that Item 2) implies [tem B). Assume that I[tem 2) holds. Notice that for

an adversarial Bayes classifier A,

/56(1A)d1@0 +/Se(1Ac)d]P>1 R

where RS is the minimal value of R°. Thus amongst all adversarial Bayes classifiers A, the
value of [ S¢(14)dPy is unique iff the value of [ S.(14¢)dP; is unique. Thus Item 2) implies
both [ Se(14,)dPo = [ Sc(1a,)dPy and [ Sc(140)dPy = [ Sc(14¢)dP, for any two adversarial
Bayes classifiers A; and A,.

Consequently, Item 2) of Theorem 178 and the fact that {f) > 1/2} € {n > 1/2} imply

that
Se(l{ﬁ>1/2}c) = Se(l{ﬁ21/2}c) Pl—a.e. and SE<1{,7>1/2}> = Se(l{ﬁ21/2}) Po-&.e.
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The complementary slackness condition Equation (D.3) implies that

/ 1i5s1/2ycdPy = / 1ip>1/2ycdPy  and / Li>1/2ydPy = / L(i>1/2ydPg

and subsequently, [tem I) of Theorem 95 implies that

/1{,]*>1/2}Cd]P)ji< = /1{77*21/2}061}?; and /l{n*>1/2}dpé :/l{n*>1/2}d]P)g.

Consequently, P*(n* = 1/2) = 0.
To show the other direction, we apply the inequalities in Theorem 87. The complimentary
slackness conditions in Theorem 177 and the first inequality in Theorem 87 imply that for

any adversarial Bayes classifier A,

/1{n*<1/2}dP>{ S /SE<1AC’)d]P)1 S/l{ﬁ*<1/2}d]}p>{

Consequently, if P*(n* = 1/2) = 0, then [ 1g:c1/93dP; = [ Se(1ac)dP;, which implies

that f Se(1 40)dP; assumes a unique value over all possible adversarial Bayes classifiers. [

D.5 PROOF OF LEMMA 99
First, if the loss ¢ is consistent, then 0 can minimize Cy(7,-) only when n = 1/2.
Lemma 179. Let ¢ be a consistent loss. Then if 0 € argmin Cy(n, ), then n = 1/2.

Proof. Consider a distribution for which n(x) = 7 is constant. Then by the consistency of
¢, if 0 minimizes Cy(7, -), then it also must minimize C(7,-) and therefore n < 1/2.
However, notice that Cy(n,a) = C4(1 —n, —«). Thus if 0 minimizes Cy(n,-) it must
also minimize Cy(1 —7),-). The consistency of ¢ then implies that 1 —n < 1/2 as well and
consequently, n = 1/2.
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The proof of Lemma 99 also uses Lemma 175 from Appendix D.1.

Proof of Lemma 99. Notice that Cy(n, ) = Cy(1 — 1, —a) and thus it suffices to consider
n>1/2+r.

Lemma 179 implies that Cy(1/2 + 7, a4(1/2 + 7)) < ¢(0). Furthermore, as ¢(—a) >
#(0) > ¢(a) when o > 0, one can conclude that ¢(ay(1/2 + 1)) < ¢(0). Now pick an
a, € (0,a4(1/2 4+ 1)) for which ¢(ay(1/2 + 7)) < ¢(a,) < ¢(0). Then by Lemma 175,
if n > 1/2 4+ r, every a less than or equal to «, does not minimize Cy(n,a) and thus

Cy(n, ) — Ci(n) > 0. Now define

k.= inf Cy(n,a)—C}
176[[11/%+r,1]] o(n, ) = C3(n)
aE|—00,0,

The set [1/2+r, 1] x [—00, ;] is sequentially compact and the function (7, a) — Cy(n, o) —
Cg(n) is continuous and strictly positive on this set. Therefore, the infimum above is assumed
for some 7, @ and consequently k, > 0.

Lastly, ¢(a,) < ¢(0) implies a,. > 0. O

D.6 PROOF OorF PrROPOSITION 101

First, we show that replacing the value of as(1/2) with 0 in Theorem 86 results in a minimizer

of R;.

Lemma 180. Let ay : [0,1] — R be as in Lemma 85 and define a function &, : [0,1] — R
by

aoln) ifn#1/2
aom =14 " (D.6)

0 otherwise
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Let ) : RY — [0,1] be the function described in Theorem 95. If ¢ is consistent and

C3(1/2) = ¢(0), then a(n(x)) is a minimizer of R,

See Appendix D.6.1 for a proof of this result. Next, we formally prove that if the adver-
sarial Bayes classifier is not unique up to degeneracy, then the sets {f} > 1/2} and {n > 1/2}
are not equivalent up to degeneracy.

This result in Lemma 102 relies on a characterization of equivalence up to degeneracy

from [23].

Theorem 181. Assume that PP is absolutely continuous with respect to Lebesque measure

and let Ay and Ay be two adversarial Bayes classifiers. Then the following are equivalent:

1) The adversarial Bayes classifiers Ay and Ay are equivalent up to degeneracy
2) Either Se(1a,) = Se(1a,)-Po-a.e. or Se(lag) = Se(14¢)-Pi-a.e.

Notice that when there is a single equivalence class, the equivalence between Item 1) and
[tem 2) is simply the equivalence between Item 1) and Item 2) in Theorem 178. This result

together with Theorem 87 proves Lemma 102:

Proof of Lemma 102. Let A be any adversarial Bayes classifier. If the adversarial Bayes
classifiers {7 > 1/2} and {f > 1/2} are equivalent up to degeneracy, then Theorem 87 and
Item 2) of Theorem 181 imply that Sc(14) = Sc(1gi>1/2)) Po-a.e. Item 2) of Theorem 181

again implies that A and {5 > 1/2} must be equivalent up to degeneracy. O

Thus, if the adversarial Bayes classifier is not unique up to degeneracy, then there is a set
A with {f > 1/2} ¢ A C {f > 1/2} that is not an adversarial Bayes classifier, and this set
is used to construct the sequence f, in Equation (5.23). Next, we show that f,, minimizes

R; but not R°.

Proposition 182. Assume that P is absolutely continuous with respect to Lebesque measure
and that the adversarial Bayes classifier is not unique up to degeneracy. Then there is a
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sequence of R-valued functions that minimize Rg but R°(f,) is constant in n and not equal

to the adversarial Bayes risk.

Proof. By Lemma 102, there is a set A with {7 > 1/2} ¢ A C {7 > 1/2} which is not an
adversarial Bayes classifier. For this set A, define the sequence f, by Equation (5.23) and
let &, be the function in Lemma 180. Lemma 99 implies that &,(n) # 0 whenever n # 1/2
and thus {f, > 0} = A for all n. We will show that in the limit n — oo, the function
sequence S¢(¢ o f,) is bounded above by S.(¢ o ds(7)) while Sc(¢ o —f,) is bounded above
by Sc(¢ 0 —ay(7})). This result will imply that f, is a minimizing sequence of .

Let Sc(g) denote the supremum of a function g on an e-ball excluding the set 7(x) = 1/2:

SUP L epgg 9(X) I B(x) N {n # 1/2}° #0
Se(g) = (< )£1/2

—00 otherwise

With this notation, because dy(1/2) = 0, one can express Sc(¢ o (7)), Se(¢p o —ay(n)) as

max(S.(¢ o ay(h)), #(0)) x € {f=1/2}¢
560 du(i) = (Se(@ 0 ag(n)), ¢(0)) {n=1/2} 0.7
| 5.0 0 0u(9) x ¢ (0= 12§

(

max(Se(¢p o —ay(n)), d(0 X ) =1/2}¢
S.(do () = (Sc( 0(1)),0(0)) x € {n=1/2} (D8

| Su(60 —a(i) x ¢ (i =1/2)

and similarly

S.(bo f) < max(Se(¢ o ay(n)), o(—=)) x € {n=1/2} -

Se(d 0 ag(n)) x & {n=1/2}
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Sbo—f) < max(Se(¢ 0 —ay(1)), ¢(—3)) x € {1 =1/2}° (D.10)

Se(¢ 0 —ay(n)) x & {n=1/2}*
Therefore, by comparing Equation (D.9) with Equation (D.7) and Equation (D.10) with

Equation (D.8), one can conclude that

lim sSup Se(¢ © fn) < Se(qb © d¢(’f])) and lim sSup Se(¢ © _fn) < Se(¢ © —d¢(ﬁ)) (Dll)

n—oo n—0o0

Furthermore, Equation (D.9) implies that Sc(¢ o f,) < Sc(¢ 0 ay(n)) + ¢(—1) and Equa-
tion (D.10) implies that Sc(¢ o —f,) < Sc(¢p o —ay(n)) + ¢(—1). Thus the dominated con-

vergence theorem and Equation (D.11) implies that

lim sup Ry (fn) < Rg(ag(n))

n—o0

and thus f, minimizes Rj.

O

Lastly, it remains to construct an R-valued sequence that minimizes Rj but not R°. To
construct this sequence, we threshhold a subsequence f,, of f, at an appropriate value
T;. If g is an R-valued function and g ) is the function ¢ threshholded at N, then

limy—ye0 R5(g™N)) = R5(9).

Lemma 183. Let g be an R-valued function and let ¢¥) = min(max(g, —N), N). Then

limy o0 RS (9NY)) = RS (9).

See Appendix D.6.2 for a proof. Proposition 101 then follows from this lemma and

Proposition 182:

Proof of Proposition 101. Let f, be the R-valued sequence of functions in Proposition 182,
and let f,, be a subsequence for which R{(f,,) — infy Rg(f) < 1/j. Next, Lemma 183
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implies that for each j one can pick a threshhold Nj for which |R§(f,;) — Rg( féﬁv’ ))| <1/j.
Consequently, féiyj )is an R-valued sequence of functions that minimizes . However, notice

that {f <0} = {f™) <0} and {f > 0} = {f7) > 0} for any strictly positive threshhold 7.

Thus RY( f,%v’ )) = R(fn,) and consequently fnivj ) does not minimize R°. O

D.6.1 PRrROOF OofF LEMMA 180

The proof of Lemma 180 follows the same outline as the argument for Proposition 176:
we show that R§(@(7)) = Ry(Pj,Pj) for the measures Py, Pj in Theorem 95, and then
Theorem 94 implies that &g(7) must minimize Rg. Similar to the proof of Proposition 176,
swapping the order of the S, operation and &, is a key step. To show that this swap is

possible, we first prove that &, is monotonic.

Lemma 184. If C;(1/2) = ¢(0), then the function éy : [0,1] — R defined in Equation (D.6)

is non-decreasing and maps each n to a minimizer of Cy(n,-).

Proof. Lemma 85 implies that é,(n) is a minimizer of Cy(n,-) for all n # 1/2 and the
assumption C(1/2) = ¢(0) implies that &4(1/2) is a minimizer of Cy(1/2,-). Furthermore,
Lemma 85 implies that &, is non-decreasing on [0,1/2) and (1/2,1]. However, Lemma 99
implies that as(n) < 0 when n € [0,1/2) and ag(n) > 0 when n € (1/2,1]. Consequently, &,

is non-decreasing on all of [0, 1]. O
This result together with the properties of [P, P} suffice to prove Lemma 180.

Proof of Lemma 180. Let P§,IP; be the measures of Theorem 95 and set P* = P + P7,
n* = dP;/dP*. We will prove that R(dg4(7))) = Ry(P,P;) and thus Theorem 94 will imply
that &,(7) minimizes Rg. Let 73 and 77 be the couplings supported on A, between Py, P

and Py, P} respectively. Item II) of Theorem 95 and Lemma 184 imply that



and

Se(p(=ay(n)) (%) = p(—=ay(Sc(1(x)))) = ¢(as(—N(x'))) 5-a-e.

(Recall the the notation I. was introduced in Equation (5.11).) Therefore,

) /925% D+ [ Gl-au(ite))an;
= [ statitnar; + [ o-auenar; = [ Catraoti)ar

Next, Item I) of Theorem 95 implies that 7(x’) = n*(x’) and consequently

RS (6(7)) = / Col7 g () ) AP = / Ol g ")) dP* = / 307" )dP* = Ry(B, F5)

Therefore, the strong duality result in Theorem 94 implies that @&,(7) must minimize Rg.

D.6.2 PROOF OF LEMMA 183
This argument is taken from the proof of Lemma 8 in [26].

Proof of Lemma 183. Define

(
a ifa<a

oy(@) = o if a € [a,b]

b ifa>0b

\

Notice that

Se(0a,n)(h)) = 010,5(Se(h))

and

P(01a,41(9)) = Tle).6(a)) (0(9))
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for any functions g and h. Therefore,

Se(d(g™)) = oppvy.s-n)(Se(@og)) and  Se(¢ o —g™) = opsn a3y (Se(d 0 —9)),

which converge to S.(¢og) and S.(¢po—g) pointwise and N — oo. Furthermore, the functions

S.(¢pog™) and S.(¢ o —gM)) are bounded above by

Se(pog™M) < S(pog)+¢(1) and S.(po—g™) < S (po—g)+o(1)

for N > 1. As the functions S.(¢pog)+¢(1) and S(¢po—g)+¢(1) are integrable with respect

to P; and Py respectively, the dominated convergence theorem implies that

lim R;(g(N)) = RS(g).

n—oo
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