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Abstract

Experiments demonstrate that in a variety of machine learning models, small but carefully

chosen perturbations to data at test time can significantly increase the classification error. As

a result, robustness to adversarial attacks is an increasingly important criterion in security-

critical applications. To improve robustness, one would hope to minimize the classification

error under an attack, known as the adversarial classification risk. The literature proposes a

plethora of tools for improving the robustness of machine learning models, but many of these

methods are poorly understood. One of the most popular defenses is adversarial training, in

which one aims to minimize an adversarial surrogate risk that computes the worst-case loss

over some allowed set of perturbations. The theory of risks in the non-adversarial setting is

well understood, and includes results such as formulas for minimizers and a characterization

of their statistical consistency. We extend some of these results to the adversarial setting.

Lastly our results provide an explanation for the phenomenon of transfer attacks.
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1 — Introduction

Neural nets are state-of-the-art models for a variety of classification tasks. However, these

models exhibit a concerning phenomenon— imperceptible perturbations to data at test-

time can derail their accuracy [14, 58]. Such attacks are a concern in security sensitive

applications such as medical imaging [47], facial recognition [72], and identifying traffic signs

in self-driving cars [37]. The error rate of a classifier under an adversarial attack is referred

to as the adversarial classification risk. One of the most popular defense algorithms is

adversarial training which performs gradient descent on an adversarial surrogate risk that

averages the value of some loss function over the worst possible attack at each point. The

theory of such risks in the non-adversarial setting is well understood [8, 38, 57], and this

thesis extends some of these results to the adversarial setting.

A better understanding of the theoretical underpinnings of adversarial learning could mo-

tivate new directions in algorithm development and explain empirical observations. Specifi-

cally, the results proved in this thesis explain the empirical phenomenon of transfer attacks,

describe the structure of minimizers to adversarial risks, and characterize the statistical con-

sistency of adversarial surrogate risks. An overview of each of these results is provided in

Sections 1.2, 1.3, and 1.4.

Chapter 2 of this thesis was published in JMLR [25] while chapter 4 was published in

NeurIps [26].
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1.1 Notation and Background

This section describes prior work on risks in the standard classification setting. We consider

the problem of binary classification on Rd with labels {−1,+1}. The measures P0, P1,

respectively, describe the probability of data with labels −1, +1 occurring in a region of Rd.

Data with label −1 is distributed according to the finite measure P0 and data with label +1

is distributed according to the finite measure P0. The classification risk of a set A is then

the proportion of errors if the set A is labeled +1 and the set AC is labeled −1:

R(A) =

∫
1ACdP1 +

∫
1AdP0

Re-writing this quantity in terms of P = P0+P1 and the conditional probability of label +1,

η = dP1/dP, assists in finding the infimum of this risk:

R(A) =

∫
η1AC + (1− η)1AdP =

∫
C(η(x),1A(x))dP(x)

with the conditional risk C : [0, 1]× {0, 1} → [0, 1] as

C(η, b) = (1− η)b+ η(1− b).

This function represents the classification error when the conditional probability of class

+1 is the constant η. Consequently, minimizing R is equivalent to minimizing C(η(x), ·)

pointwise. As a result, the sets

{η(x) > 1/2} and {η(x) ≥ 1/2} (1.1)

are both Bayes classifiers. The Bayes classifier is unique if P(η = 1/2) = 0, or alter-
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natively, amongst all Bayes classifiers, either the value of P0(A) is unique or the value of

P1(A
C) is unique.

However, minimizing the empirical classification risk is computationally difficult and

consequently machine learning algorithms typically minimize a different quantity called a

surrogate risk. We consider the margin-based surrogate,

Rϕ(f) =

∫
ϕ(f)dP1 +

∫
ϕ(−f)dP0.

The function f is then threshholded at 0 to obtain a classifier; we define the classification

error of f as R(f) = R({f > 0}). The loss function ϕ is non-increasing, so that the quantity

ϕ(yf(x)) can be interpreted as a confidence level, with a high value of yf(x) implying high

confidence.

Again, one can compute minimizers to Rϕ by writing this risk in terms of the quantities

P and η:

Rϕ(f) =

∫
ηϕ(f) + (1− η)ϕ(−f)dP =

∫
Cϕ(η(x), f(x))dP(x).

with the conditional risk as the function

Cϕ(η, α) = ηϕ(α) + (1− η)ϕ(−α).

Again, the conditional risk is the surrogate risk when the conditional probability of class +1 is

the constant η. Thus minimizing the integrand Cϕ(η(x), ·) pointwise will produce a minimizer

of Rϕ. However, minimizers may not exist on R: consider for instance a distribution for

which η(x) ≡ 1 and ϕ = e−α is the exponential loss, so that Cϕ(η(x), α) = e−α. However,

minimizers will exist over the extended real numbers R:

Lemma. There is a non-decreasing function αϕ : [0, 1] → R that maps each η to the smallest

minimizer of Cϕ(η, ·).

3



Consequently, the function

αϕ(η(x)) (1.2)

is a minimizer of Rϕ. The minimal value of Rϕ(f) is then
∫
C∗
ϕ(η)dP with

C∗
ϕ(η) = inf

α
Cϕ(η, α). (1.3)

However, minimizing the surrogate Rϕ may not minimize the classification risk R. If

every minimizing sequence of Rϕ is also a minimizing sequence of R, then the loss ϕ is

consistent. The consistency of surrogate risks is a well studied problem. In particular, [8]

show

Theorem. A convex loss ϕ is consistent iff it is differentiable at 0 and ϕ′(0) < 0.

This thesis extends these results to adversarial risks. In the adversarial setting, a point

is misclassified if a malicious adversary can perturb the point into the opposite class. The

adversary’s possible attacks are modeled by an ϵ ball in some norm ∥ · ∥. Thus, a point

x ∈ A is missclassified when there is some h ∈ Bϵ(0) for which x + h ∈ AC , or in other

words, sup∥x′−x∥≤ϵ 1A(x
′) = 1. The operation of computing a supremum over a closed ϵ-ball

is denoted by

Sϵ(g)(x) = sup
∥x−x′∥≤ϵ

g(x′).

Thus, a point x in A is misclassified iff Sϵ(1A)(x) = 1 while a point in AC is misclassified iff

Sϵ(1AC )(x) = 1. The adversarial classification risk is the proportion of errors when the set

A is labeled +1 and the set AC is labeled −1:

Rϵ(A) =

∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0.

Just as in the setting of standard learning, minimizing an empirical version of the adver-

sarial classification risk is computationally intractable. Instead, one typically minimizes the

4



surrogate

Rϵ
ϕ(f) =

∫
Sϵ(ϕ ◦ f)dP1 +

∫
Sϵ(ϕ ◦ −f)dP0

Notice that in order to define these adversarial risks, one must show that Sϵ(g) is measurable

when g is measurable. This topic is addressed in Chapter 2. A loss is adversarially consistent

if every minimizing sequence of Rϵ
ϕ is also a minimizing sequence of Rϵ.

This thesis will study the form of minimizers to the adversarial risks Rϵ, Rϵ
ϕ and analyze

the adversarial consistency of surrogate losses.

1.2 Transfer Attacks

Prior experimental work shows that adversarial examples tend to transfer between deep

networks trained for the same task— in other words, if both f1 and f2 are trained for the

same classification task, then an adversarial example that fools f1 will frequently fool f2.

Such attacks are referred to as transfer attacks, and they provide a method for attacking a

machine learning model without access to the model parameters. These methods are referred

to as black box attacks, in contrast to a white box attacks in which the adversary has full

access to the model. Transfer attacks have a lower success rate than white box attacks. For

instance, [18] train a neural net on handwritten 8 and 9 digits. In their experiments on neural

nets with adversarial perturbations of size at most 1 in the ℓ2 norm, transfer attacks have

a success rate of 10% − 20% while their white box attack succeeds 20% − 30% of the time

(see Figure 7). Furthermore, they show that the phenomenon of transfer attacks extends

to other models in addition to neural nets such as random forests, logistic regression, and

kernel SVMs.

Our results provide an explanation of transfer attacks in terms of complimentary slackness

conditions. The minimax theorem above models an attack as a measure of distance at most

ϵ from the original data distribution in the Wasserstein ∞-metric. Informally, a measure is
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within ϵ of Q if one can obtain the measure Q′ by moving each point in Rd by at most ϵ under

the measure Q. Consequently, the Wasserstein-∞ metric is well-suited for modeling a norm-

bounded adversary. This metric, also denoted W∞, is formally defined in Chapters 2, 3, 4,

and 5. Let B∞
ϵ (Q) = {Q′ : W∞(Q,Q′) ≤ ϵ} denote the ∞-Wasserstein ball of measures

around Q. Chapter 2 relates the risk Rϵ
ϕ to a dual quantity.

Theorem. Let P0, P1 be finite Borel measures and let C∗
ϕ be the function defined by (1.3).

Define

R̄ϕ(P′
0,P′

1) =

∫
C∗
ϕ

(
dP′

1

d(P′
1 + P′

0)

)
d(P′

1 + P′
0)

Then

inf
f Borel
R-valued

Rϵ
ϕ(f) = sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1) (1.4)

Furthermore, both the infimum is attained by a function f ∗ and the supremum is attained by

measures P∗
0, P∗

1.

Earlier work [52] proved a similar minimax theorem for Rϵ that replaced C∗
ϕ in the

definition of R̄ϕ with C∗. This theorem directly leads to complimentary slackness conditions

that characterize the minimizers of Rϵ
ϕ and the maximizers of R̄ϕ.

Theorem. The function f ∗ is a minimizer of Rϵ
ϕ and P∗

0,P∗
1 maximize R̄ϕ over B∞

ϵ (P0) and

B∞
ϵ (P1) iff:

1) ∫
Sϵ(ϕ ◦ f ∗)dP1 =

∫
ϕ ◦ f ∗dP∗

1 and

∫
Sϵ(ϕ ◦ −f ∗)dP0 =

∫
ϕ ◦ −fdP∗

0

2) Let P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Then

η∗(x)ϕ(f ∗(x)) + (1− η∗(x))ϕ(−f ∗(x)) = C∗
ϕ(η

∗(x)) P∗-a.e.

6



Item 1) states that the measures P∗
0, P∗

1 must be optimal adversarial attacks against f ∗

while item 2) states that f ∗ must minimize the conditional risk C∗
ϕ(η

∗(x), ·) of optimal ad-

versarial attacks P∗-a.e. These conditions apply to any minimizer of Rϵ
ϕ and any maximizers

of R̄ϕ. Thus an optimal adversarial attack must preform equally well against any two mini-

mizers of Rϵ
ϕ! The fact that transfer attacks have a significantly lower success rate that white

box attacks suggests that either the state-of-the-art attacks or state-of-the-art defenses are

far from optimal.

Minimizers of risks in machine learning are typically found via some optimization al-

gorithm, and these procedures can only achieve approximate optimally. Do approximate

minimizers and maximizers exhibit the effect of transfer attacks? Below, we answer this

question in the affirmative: specifically, if f is an approximate minimizer of Rϵ
ϕ and P′

0,P′
1

are an approximate maximizer of the dual problem R̄ϕ, then
∫
ϕ◦fdP1+

∫
ϕ◦−fdP0 ≈ Rϵ

ϕ,∗,

where Rϵ
ϕ,∗ is the optimal value of the optimization problem. Assume that Rϵ

ϕ(f) ≤ Rϵ
ϕ,∗ + δ

and R̄(P′
0,P′

1) ≥ Rϵ
ϕ,∗ − δ for some δ > 0. Then moving each point under Q by the worst-

case amount in an ϵ-ball will results in the function Sϵ(g), and consequently
∫
Sϵ(g)dQ ≥∫

Sϵ(g)dQ′ for any Q′ ∈ B∞
ϵ (Q) (see Chapter 2 for a formal statement and proof). Similarly,

the definition of the function C∗
ϕ in (1.2) implies that C∗

ϕ(η
∗) ≤ Cϕ(η

∗, f) for any function f .

Therefore,

Rϵ
ϕ,∗ + δ ≥ Rϵ

ϕ(f) ≥
∫
ϕ ◦ fdP′

1 +

∫
ϕ ◦ −fdP′

0

=

∫
Cϕ(η

′, f)dP′ ≥
∫
C∗
ϕ(η

′)dP′ = R̄ϕ(P′
0,P′

1) ≥ Rϵ
ϕ,∗ − δ

where P′ = P′
0 + P′

1 and η′ = dP′
1/dP′. Subtracting Rϵ

ϕ,∗ from both sides of this inequality

shows that ∣∣∣∣(∫ ϕ ◦ fdP′
1 +

∫
ϕ ◦ −fdP′

0

)
−Rϵ

ϕ,∗

∣∣∣∣ ≤ δ

Therefore, as any almost-optimal attack against any almost-optimal minimizer of Rϵ
ϕ will

7



achieve almost the same risk, one would expect to find transfer attacks even for approximate

optimizers found by machine learning models.

1.3 The Structure of Minimizers to Rϵ and Rϵ
ϕ

Chapters 2 and 5 extend Equations 1.1 and 1.2 to the adversarial setting. Specifically,

Chapter 2 proves that there is a function η̂ : Rd → [0, 1] that reflects the conditional

probability of class +1 under an optimal adversarial attack, and specifically connects this

function to the quantity dP∗
1/d(P∗

1+dP∗
0) for some optimal ‘attack measures’ P∗

0 and P∗
1. One

can show that minimizers to Rϵ and Rϵ
ϕ can be constructed just like those in Equations 1.1

and 1.2.

Theorem. For every distribution P0, P1, there is a function η̂ : Rd → [0, 1] for which

I) The function αϕ(η̂(x)) minimizes Rϵ
ϕ for every ϕ, where αϕ is as defined in Section 1.1

II) The sets {η̂ > 1/2} and {η̂ ≥ 1/2} minimize Rϵ

The sets {η̂ > 1/2} and {η̂ ≥ 1/2} are ‘minimal’ and ‘maximal’ adversarial Bayes

classifiers in the sense that

Sϵ(1{η̂≥1/2}C ) ≤ Sϵ(1AC ) ≤ Sϵ(1{η̂>1/2}C ) P1-a.e.

and

Sϵ(1{η̂≥1/2}) ≤ Sϵ(1A) ≤ Sϵ(1{η̂≥1/2}) P0-a.e.

for any other adversarial Bayes classifier A. Chapter 3 also defines uniqueness for the

adversarial Bayes classifier by constructing an equivalence relation on such sets. Two

adversarial Bayes classifiers A1 and A2 are equivalent up to degeneracy if for any set A with

8



A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2 is also an adversarial Bayes classifier. When P is absolutely

continuous with respect to Lebesgue measure, equivalence up to degeneracy defines an

equivalence relation. The adversarial Bayes classifier is unique up to degeneracy if there is a

single equivalence class. There are a few other useful characterizations of uniqueness up to

degeneracy.

Informal Theorem. Assume that P0 and P1 are absolutely continuous with respect to

Lebesgue measure. Then the following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy

B) Amongst all adversarial Bayes classifiers A, either the value of P0(A
ϵ) is unique or the

value of P1((A
C)ϵ) is unique

C) There are measures representing ‘optimal adversarial attacks’ P∗
0,P∗

1 for which P∗(η∗ =

1/2) = 0, where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗

Again, the measures of ‘optimal adversarial attacks’ P∗
0, P∗

1 are defined using the

Wasserstein-∞ distance. Item C) generalizes the criterion P(η = 1/2) = 0 for Bayes

classifiers. Similarly, Item B) generalizes the criterion that amongst all Bayes classifiers,

either the value of P0(A) is unique or the value of P1(A
C) is unique.

Furthermore, Chapter 3 provides the tools for computing a representative of each

equivalence class of adversarial Bayes classifiers under equivalence up to degeneracy. An

example from Chapter 3 shows that uniqueness up to degeneracy can fail for all ϵ > 0 even

when the Bayes classifier is unique. However, the densities of this example distribution

were discontinuous while the other examples in this section were better behaved.

Conjecture. If the densities of P0 and P1 are sufficiently smooth with non-zero derivatives

on the boundary of the Bayes classifier, then the adversarial Bayes classifier is unique up to

degeneracy.

Proving or refuting this conjecture remains an open problem.
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1.4 The Consistency of Adversarial Surrogate

Risks

Lastly, the results above provide the tools for analyzing the statistical consistency of

adversarial surrogate risks. Prior work [42] provides an example which proves that no

convex loss is adversarially consistent: Let P0, P1 be uniform distributions of equal mass

the ball Bϵ/2(0): then every point in the support can be reached from every other point by

a perturbation of size at most ϵ and thus if 1A is non-constant on Bϵ(0) then R
ϵ(A) = 1.

On the other hand, the constant classifiers Rd, ∅ each achieve the risk 1/2, and therefore

must be optimal. Next, assume that our loss function satisfies C∗
ϕ(1/2) = ϕ(0). This

property is satisfied by ever convex ϕ because a convex function must satisfy

Cϕ(1/2, α) =
1
2
ϕ(α) + 1

2
ϕ(−α) ≥ ϕ(0). Consider the constant function f ≡ 0. Then

Rϵ
ϕ(f) = ϕ(0), which also equals the minimum standard risk for this problem Rϕ,∗. The

optimal standard risk is always a lower bound on the optimal adversarial risk and as a

result f ≡ 0 is a minimizer of Rϵ
ϕ.

Consider the sequence of functions

fn =


1
n

if x = 0

− 1
n

otherwise

Then Rϵ
ϕ(fn) = ϕ(−1/n) which approaches ϕ(0), while Rϵ(fn) = 1. Thus fn is a minimizing

sequence of Rϵ
ϕ that is not a minimizing sequence of Rϵ (see Chapter 4 for a rigorous

exposition of this example.)

The example above demonstrates that the obstacle to adversarial consistency for convex

losses is the discontinuity of the indicator functions 1α≤0, 1α>0 at zero.

We propose two methods for circumventing this difficulty: first, one can use a loss function
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for which minimizers to Cϕ(η, ·) are bounded away from zero for all η. Losses with

C∗
ϕ(1/2) < ϕ(0) satisfy this requirement.

Lemma. Let ϕ be a loss with C∗
ϕ(1/2) < ϕ(0). Then there exists some α∗ > 0 for which

every minimizer α of Cϕ(η, ·) must satisfy |α| ≥ α∗.

Losses satisfying this requirement are in fact adversarially consistent:

Theorem. Any loss with C∗
ϕ(1/2) < ϕ(0) is both consistent and adversarially consistent.

However, if a loss is consistent, every minimizer of Cϕ(η, ·) must satisfy |α| > 0 so long as

η ̸= 1/2. Thus, another method of circumventing the discontinuity at zero is considering

distributions for which the conditional probability of 1/2 is measure zero, according to an

appropriate measure. The appropriate measure in this case is the measure of optimal

adversarial attacks P∗
0,P∗

1 discussed in the prior two sections. However, the condition

P∗(η∗ = 1/2) = 0 for P∗ = P∗
0 + P∗

1, η
∗ = dP∗

1/dP∗ is equivalent to the uniqueness of the

adversarial Bayes classifier under reasonable conditions. Consequently, assuming that the

adversarial Bayes classifier is unique up to degeneracy will also avoid the discontinuity at

zero.

Informal Theorem. Let ϕ be a consistent loss with C∗
ϕ(1/2) = ϕ(0). Then ϕ is consistent

for the distribution P0, P1 iff the adversarial Bayes classifier is unique up to degeneracy.
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2 — A Minimax Theorem for

Adversarial Surrogate Risks

2.1 Introduction

Neural networks are state-of-the-art methods for a variety of machine learning tasks including

image classification and speech recognition. However, a concerning problem with these

models is their susceptibility to adversarial attacks : small perturbations to inputs can cause

incorrect classification by the network [14, 58]. This issue has security implications; for

instance, Gu, Dolan-Gavitt, and Garg [31] show that a yellow sticker can cause a neural net

to misclassify a stop sign. Furthermore, one can find adversarial examples that generalize

to other neural nets; these sort of attacks are called transfer attacks. In other words, an

adversarial example generated for one neural net will sometimes be an adversarial example

for a different neural net trained for the same classification problem [18, 35, 46, 54, 60].

This phenomenon shows that access to a specific neural net is not necessary for generating

adversarial examples. One method for defending against such adversarial perturbations

is adversarial training, in which a neural net is trained on adversarially perturbed data

points [35, 39, 67]. However, adversarial training is not well understood from a theoretical

perspective.

From a theoretical standpoint, the most fundamental question is whether it is possible
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to design models which are robust to such attacks, and what the properties of such robust

models might be. In contrast to the classical, non-adversarial setting, much is still unknown

about the basic properties of optimal robust models. In the context of binary classification,

several prior works study properties of the adversarial classification risk—the expected num-

ber of classification errors under adversarial perturbations. Recently, Awasthi, Frank, and

Mohri [2], Bungert, Trillos, and Murray [16], and Pydi and Jog [52] all showed existence of a

minimizer to the adversarial classification risk under suitable assumptions, and characterized

some of its properties. A crucial observation, emphasized by Pydi and Jog [52], is that mini-

mizing the adversarial classification risk is equivalent to a dual robust classification problem

involving uncertainty sets with respect to the ∞-Wasserstein metric. This observation gives

rise to a game-theoretic interpretation of robustness, which takes the form of a zero-sum

game between a classifier and an adversary who is allowed to perturb the data by a certain

amount. As noted by Pydi and Jog [52], this interpretation has implications for algorithm

design by suggesting that robust classifiers can be constructed by jointly optimizing over

classification rules and adversarial perturbations.

This recent progress on adversarial binary classification lays the groundwork for a the-

oretical understanding of adversarial robustness, but it is limited insofar as it focuses only

on minimizers of the adversarial classification risk. In practice, minimizing the empirical ad-

versarial classification risk is computationally intractable; as a consequence; the adversarial

training procedure typically minimizes an objective called a surrogate risk, which is chosen

to be easier to optimize. In the non-adversarial setting, the properties of surrogate risks are

well known [see, e.g. 8], but in the adversarial scenario, existing results for the adversar-

ial classification risk fail to carry over to surrogate risks. In particular, the existence and

minimax results described above are not known to hold. We close this gap by developing

an analogous theory for adversarial surrogate risks. Our main theorems (Theorems 7–9)

establish that strong duality holds for the adversarial surrogate risk minimization problem,
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that solutions to the primal and dual problems exist, and that these optimizers satisfy a

complementary slackness condition.

These results suggest explanations for empirical observations, such as the existence of

transfer attacks. Specifically, our analysis suggests that adversarial examples are a property

of the data distribution rather than a specific model. In fact, the complementary slackness

theorem presented in this paper states that certain attacks are the strongest possible ad-

versary against any minimizer of the adversarial surrogate risk, which might explain why

adversarial examples tend to transfer between trained neural nets. Furthermore, our the-

orems suggest that a training algorithm should optimize over neural nets and adversarial

perturbations simultaneously. Adversarial training, the current state of the art method for

finding adversarially robust networks, does not follow this procedure. The adversarial train-

ing algorithm tracks an estimate of the optimal function f̃ . To update f̃ , the algorithm first

finds optimal adversarial examples at the current estimate f̃ , and then performs a gradient

descent step. See the papers [30, 35, 39] for more details on adversarial training. Finding

these adversarial examples is a computationally intensive procedure. On the other hand,

algorithms for optimizing minimax problems in the finite dimensional setting alternate be-

tween primal and dual steps [44]. This observation suggests that designing an algorithm that

optimizes over model parameters and adversarial perturbations simultaneously is a promis-

ing research direction. Domingo-Enrich et al. [20], Trillos and Trillos [61], and Wang and

Chizat [66] adopt this approach, and one can view the minimax results of this paper as a

mathematical justification for the use of surrogate losses in such algorithms.

Lastly, our theorems are an important first step in understating statistical properties of

surrogate losses. Recall that one minimizes a surrogate risk because minimizing the original

risk is computationally intractable. If a sequence of functions which minimizes the surrogate

risk also minimizes the classification risk, then that surrogate is referred to as a consistent

risk. Similarly, if a sequence of functions which minimizes the adversarial surrogate risk
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also minimizes the adversarial classification risk, then that surrogate is referred to as an

adversarially consistent risk. Much prior work studies the consistency of surrogate risks [8,

38, 43, 49, 57, 75]. Alarmingly, [42] show that a family of surrogates used in applications

is not adversarially consistent. In follow-up work, we show that our results can be used

to characterize adversarially consistent supremum-based risks for binary classification [26],

strengthening results on calibration in the adversarial setting [4, 6, 42].

2.2 Related Works

This paper extends prior work on the adversarial Bayes classifier. Pydi and Jog [52] first

proved multiple minimax theorems for the adversarial classification risk using optimal trans-

port and Choquet capacities, showing an intimate connection between adversarial learning

and optimal transport. Later, follow-up work used optimal transport minimax reformula-

tions of the adversarial learning problem to derive new algorithms for adversarial learning.

Trillos, Jacobs, and Kim [63] reformulate adversarial learning in terms of a multi-marginal

optimal transport problem and then apply existing techniques from optimal transport to

find a new algorithm. Domingo-Enrich et al. [20], Trillos and Trillos [61], and Wang and

Chizat [66] propose ascent-descent algorithms based on optimal transport and use mean-

field dynamics to analyze convergence. These approaches leverage the minimax view of the

adversarial training problem to optimize over model parameters and optimal attacks simul-

taneously. Gao, Chen, and Kleywegt [27] use an optimal transport reformulation to find

regularizers that encourage robustness. Wong, Schmidt, and Kolter [69] and Wu, Wang, and

Yu [70] use Wasserstein metrics to formulate adversarial attacks on neural networks.

Further work analyzes properties of the adversarial Bayes classifier. Awasthi, Frank, and

Mohri [2], Bhagoji, Cullina, and Mittal [11], and Bungert, Trillos, and Murray [16] all prove

the existence of the adversarial Bayes classifier, using different techniques. Yang et al. [73]
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studied the adversarial Bayes classifier in the context of non-parametric methods. Pydi and

Jog [50] and Bhagoji, Cullina, and Mittal [11] further introduced methods from optimal

transport to study adversarial learning. Lastly, [64] give necessary and sufficient conditions

describing the boundary of the adversarial Bayes classifier. Simultaneous work [36] also

proves the existence of minimizers to adversarial surrogate risks using prior results on the

adversarial Bayes classifier.

The adversarial training algorithm is also well studied from an empirical perspective.

Demontis et al. [18] discussed an explanation of transfer attacks on neural nets trained using

standard methods, but did not extend their analysis to the adversarial training setting. [35,

39, 67] study the adversarial training algorithm and improving the runtime. Two particularly

popular attacks used in adversarial training are the FGSM attack [30] and the PGD attack

[39]. More recent popular variants of this algorithm include [34, 56, 68, 71].

2.3 Background and Notation

2.3.1 Adversarial Classification

This paper studies binary classification on Rd with two classes encoded as −1 and +1. Data

is distributed according to a distribution D on Rd × {−1,+1}. We denote the marginals

according to the class labels as P0(S) = D(S×{−1}) and P1(S) = D(S×{+1}). Throughout

the paper, we assume P0(Rd) and P1(Rd) are finite but not necessarily that P0(Rd)+P1(Rd) =

1.

To classify points in Rd, algorithms typically learn a real-valued function f and then

classify points x according to the sign of f (arbitrarily assigning the sign of 0 to be −1).

The classification error, also known as the classification risk, of a function f is

R(f) =

∫
1f(x)≤0dP1 +

∫
1f(x)>0dP0. (2.1)
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Notice that finding minimizers to R is straightforward: define the measure P = P0 + P1 and

let η = dP1/dP. Then the risk R can be re-written as

R(f) =

∫
η(x)1f(x)≤0 + (1− η(x))1f(x)>0dP.

Hence a minimizer of R must minimize the function C(η(x), α) = η(x)1α≤0+(1− η(x))1α>0

at each x P-a.e. The optimal Bayes risk is then

inf
f
R(f) =

∫
C∗(η)dP

where C∗(η) = infαC(η, α) = min(η, 1− η).

This paper analyzes the evasion attack, in which an adversary knows both the function

f and the true label of the data point, and can perturb each input before it is evaluated by

the function f . To constrain the adversary, we assume that perturbations are bounded by

ϵ in a norm ∥ · ∥. Thus a point x with label +1 is misclassified if there is a perturbation h

with ∥h∥ ≤ ϵ for which f(x+h) ≤ 0 and a point x with label −1 is misclassified if there is a

perturbation h with ∥h∥ ≤ ϵ for which f(x+h) > 0. Therefore, the adversarial classification

risk is

Rϵ(f) =

∫
sup
∥h∥≤ϵ

1f(x+h)≤0dP1 +

∫
sup
∥h∥≤ϵ

1f(x+h)>0dP0 (2.2)

which is the expected proportion of errors subject to the adversarial evasion attack. The

expression sup∥h∥≤ϵ 1f(x+h)≤0 evaluates to 1 at a point x iff x can be moved into the set

[f ≤ 0] by a perturbation of size at most ϵ. Equivalently, this set is the Minkowski sum ⊕

of [f ≤ 0] and Bϵ(0). For any set A, let Aϵ denote

Aϵ = {x : ∃h with ∥h∥ ≤ ϵ and x+ h ∈ A} = A⊕Bϵ(0) =
⋃
a∈A

Bϵ(a). (2.3)

This operation ‘thickens’ the boundary of a set by ϵ. With this notation, (2.2) can be
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expressed as Rϵ(f) =
∫
1{f≤0}ϵdP1 +

∫
1{f>0}ϵdP0.

Unlike the classification risk R, finding minimizers to Rϵ is nontrivial. One can re-write

Rϵ in terms of P and η but the resulting integrand cannot be minimized in a pointwise

fashion. Nevertheless, it can be shown that minimizers of Rϵ exist [2, 16, 26, 52].

2.3.2 Surrogate Risks

As minimizing the empirical version of risk in (2.1) is computationally intractable, typical

machine learning algorithms minimize a proxy to the classification risk called a surrogate risk.

In fact, Ben-David, Eiron, and Long [9] show that minimizing the empirical classification

risk is NP-hard in general. A popular surrogate is

Rϕ(f) =

∫
ϕ(f)dP1 +

∫
ϕ(−f)dP0 (2.4)

where ϕ is a decreasing function.1 To define a classifier, one then threshholds f at zero.

There are many reasonable choices for ϕ—one typically chooses an upper bound on the

zero-one loss which is easy to optimize. We make the following assumption on ϕ:

Assumption 1. The loss ϕ is non-increasing, non-negative, lower semi-continuous, and

limα→∞ ϕ(α) = 0.

A particularly important example, which plays a large role in our proofs, is the exponen-

tial loss ψ(α) = e−α, which will be denoted by ψ in the remainder of this paper. Assumption 1

includes many but not all all surrogate risks used in practice. Notably, some multiclass sur-

rogate risks with two classes are of a somewhat different form, see for instance [59] for more

details.

1Notice that due to the asymmetry of the sign function at 0 in (2.1), Rϕ is not quite a generalization of
R.
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In order to find minimizers of Rϕ, we rewrite the risk in terms of P and η as

Rϕ(f) =

∫
η(x)ϕ(f(x)) + (1− η(x))ϕ(−f(x))dP (2.5)

Hence the minimizer of Rϕ must minimize Cϕ(η, ·) pointwise P-a.e., where

Cϕ(η, α) = ηϕ(α) + (1− η)ϕ(−α).

In other words, if one defines C∗
ϕ(η) = infαCϕ(η, α), then a function f ∗ is optimal if and

only if

η(x)ϕ(f ∗(x)) + (1− η(x))ϕ(−f ∗(x)) = C∗
ϕ(η(x)) P-a.e. (2.6)

Thus one can write the minimum value of Rϕ as

inf
f
Rϕ(f) =

∫
C∗
ϕ(η)dP. (2.7)

To guarantee the existence of a function satisfying (2.6), we must allow our functions to take

values in the extended real numbers R = R ∪ {−∞,+∞}. Allowing the value α = +∞ is

necessary, for instance, for the exponential loss ψ(α) = e−α: when η = 1, the minimum of

Cψ(1, α) = e−α is achieved at α = +∞. In fact, one can express a minimizer as a function

of the conditional probability η(x) using (2.6). For a loss ϕ, define αϕ : [0, 1] → R by

αϕ(η) = inf{α : α is a minimizer of Cϕ(η, ·)}. (2.8)

Lemma 25 in Appendix A.3 shows that the function αϕ is monotonic and αϕ(η) is in fact a

minimizer of Cϕ(η, ·). Thus

f ∗(x) = αϕ(η(x)) (2.9)

is measurable and satisfies (2.6). Therefore, the function f ∗ must be a minimizer of the risk
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Rϕ.

Similarly, rather directly minimizing the adversarial classification risk, practical algo-

rithms minimize an adversarial surrogate. The adversarial counterpart to (2.4) is

Rϵ
ϕ(f) =

∫
sup
∥h∥≤ϵ

ϕ(f(x+ h))dP1 +

∫
sup
∥h∥≤ϵ

ϕ(−f(x+ h))dP0. (2.10)

Due to the definitions of the adversarial risks (2.2) and (2.10), the operation of finding

the supremum of a function over ϵ-balls is central to our subsequent analysis. For a function

g, we define

Sϵ(g)(x) = sup
∥h∥≤ϵ

g(x+ h) (2.11)

Using this notation, one can re-write the risk Rϵ
ϕ as

Rϵ
ϕ(f) =

∫
Sϵ(ϕ ◦ f)dP1 +

∫
Sϵ(ϕ ◦ −f)dP0

By analogy to (2.5), we equivalently write the risk Rϵ
ϕ in terms of P and η:

Rϵ
ϕ(f) =

∫
η(x)Sϵ(ϕ ◦ f)(x) + (1− η(x))Sϵ(ϕ ◦ −f)(x)dP. (2.12)

However, unlike (2.5), because the integrand of Rϵ
ϕ cannot be minimized in a pointwise man-

ner, proving the existence of minimizers to Rϵ
ϕ is non-trivial. In fact, unlike the adversarial

classification risk Rϵ, there is little theoretical understanding of the properties of Rϵ
ϕ.

2.3.3 Measurability

In order to define the adversarial risks Rϵ and Rϵ
ϕ, one must show that Sϵ(1A), Sϵ(ϕ ◦ f)

are measurable. To illustrate this concern, Pydi and Jog [52] show that for every ϵ > 0

and d > 1, there is a Borel set C for which the function Sϵ(1C)(x) is not Borel measurable.
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However, if g is Borel, then Sϵ(g) is always measurable with respect to a larger σ-algebra

called the universal σ-algebra U (Rd). Such a function is called universally measurable. We

prove the following theorem and formally define the universal σ-algebra in Appendix A.1.

Theorem 1. If f is universally measurable, then Sϵ(f) is also universally measurable.

In fact, in Appendix A.1, we show that a function defined by a supremum of a universally

measurable function over a compact set is universally measurable—a result of independent

interest. The universal σ-algebra is smaller than the completion of B(Rd) with respect to any

Borel measure. Thus, in the remainder of the paper, unless otherwise noted, all measures

will be Borel measures and the expression
∫
Sϵ(f)dQ will be interpreted as the integral of

Sϵ(f) with respect to the completion of Q.

2.3.4 The W∞ Metric

In this section, we explain how the integral of a supremum
∫
Sϵ(f)dQ can be expressed in

terms of a supremum of integrals. We start by defining the Wasserstein-∞ metric.

Definition 2. Let P,Q be two finite measures with P(Rd) = Q(Rd). A coupling is a positive

measure on the product space Rd×Rd with marginals P,Q. We denote the set of all couplings

with marginals P, Q by Π(P,Q). The ∞-Wasserstein distance with respect to a norm ∥ · ∥

is defined as

W∞(P,Q) = inf
γ∈Π(P,Q)

ess sup
(x,x′)∼γ

∥x− x′∥

Jylhä [33, Theorem 2.6] proves that the infimum is always attained. Therefore, P, Q are

within a Wasserstein-∞ distance of ϵ if there is a coupling γ for P and Q for which supp γ

is contained in the set ∆ϵ = {(x,x′) : ∥x− x′∥ ≤ ϵ}. This optimal coupling will be a useful

tool in proving theorems throughout this paper.

The ∞-Wasserstein metric is closely related to the to the operation Sϵ. First, we show

that Sϵ can be expressed as a supremum of integrals over a Wasserstein-∞ ball. For a
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measure Q, we write

B∞
ϵ (Q) = {Q′ Borel : W∞(Q,Q′) ≤ ϵ}.

Lemma 3. Let Q be a finite positive Borel measure and let f : Rd → R ∪ {∞} be a Borel

measurable function. Then

∫
Sϵ(f)dQ = sup

Q′∈B∞
ϵ (Q)

∫
fdQ′ (2.13)

Lemma 5.1 of Pydi and Jog [52] proves an analogous statement for sets, namely that

Q(Aϵ) = supQ′∈B∞
ϵ (Q) Q(A), under suitable assumptions on Q and Q′.

Conversely, theW∞ distance between two probability measures can be expressed in terms

of the integrals of f and Sϵ(f). Let Cb(X) be the set of continuous bounded functions on

the topological space X.

Lemma 4. Let P,Q be two finite positive Borel measures with P(Rd) = Q(Rd). Then

W∞(P,Q) = inf
ϵ
{ϵ ≥ 0:

∫
hdQ ≤

∫
Sϵ(h)dP ∀h ∈ Cb(Rd)}

This observation will be central to proving a duality result. See Appendix A.2 for proofs

of Lemmas 3 and 4.

2.4 Main Results and Outline of the Paper

2.4.1 Summary of Main Results

Our goal in this paper is to understand properties of the surrogate risk minimization problem

inff R
ϵ
ϕ. The starting point for our results is Lemma 3, which implies that inff R

ϵ
ϕ actually
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involves a inf followed by a sup:

inf
f Borel

Rϵ
ϕ(f) = inf

f Borel
sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

∫
ϕ ◦ fdP′

1 +

∫
ϕ ◦ −fdP′

0.

We therefore obtain a lower bound on inff R
ϵ
ϕ by swapping the sup and inf and recalling the

definition of C∗
ϕ(η) = infαCϕ(η, α):

inf
f Borel

Rϵ
ϕ(f) ≥ sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
f Borel

∫
ϕ ◦ fdP′

1 +

∫
ϕ ◦ −fdP′

0

= sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
f Borel

∫
dP′

1

d(P′
0 + P′

1)
ϕ(f) +

(
1− dP′

1

d(P′
0 + P′

1)

)
ϕ(−f)d(P′

0 + P′
1)

≥ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

∫
C∗
ϕ

(
dP′

1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1). (2.14)

If we define

R̄ϕ(P′
0,P′

1) =

∫
C∗
ϕ

(
dP′

1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1), (2.15)

then we have shown

inf
f Borel

Rϵ
ϕ(f) ≥ sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1). (2.16)

This statement is a form of weak duality.

When the surrogate adversarial risk is replaced by the standard adversarial classification

risk, Pydi and Jog [52] proved that the analogue of (2.16) is actually an equality, so that

strong duality holds for the adversarial classification problem. Concretely, by analogy to

(2.15), consider

R̄(P′
0,P′

1) =

∫
C∗
(

dP′
1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1).
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Let µ be the Lebesgue measure and let Lµ(Rd) be the Lebesgue σ-algebra. Then define

B̃∞
ϵ (Q) = {Q′ : W∞(Q,Q′) ≤ ϵ,Q′ a measure on (Rd,Lµ(Rd))}. (2.17)

Pydi and Jog [52] show the following.

Theorem 5 ([52, Theorem 7.1]). Assume that P0,P1 are absolutely continuous with respect

to the Lebesgue measure µ. Then

inf
f Lebesgue

Rϵ(f) = sup
P′
0∈B̃∞

ϵ (P0)

P′
1∈B̃∞

ϵ (P1)

R̄(P′
0,P′

1) (2.18)

and furthermore equality is attained at some Lebesgue measurable f̂ and P̂1, P̂0.

Additionally, P̂i = Pi ◦ φ−1
i for some universally measurable φi with ∥φi(x) − x∥ ≤ ϵ,

sup∥y−x∥≤ϵ 1f̂(y)≤0 = 1f̂(φ1(x))≤0 P1-a.e., and sup∥y−x∥≤ϵ 1f̂(y)>0 = 1f̂(φ0(x))>0 P0-a.e.

This is a foundational result in the theory of adversarial classification, but it leaves an

open question crucial in applications: Does the strong duality relation extend to surrogate

risks and to general measures? In this work, we answer this question in the affirmative.

We start by proving the following:

Theorem 6 (Strong Duality). Let P0,P1 be finite Borel measures. Then

inf
f Borel

Rϵ
ϕ(f) = sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1). (2.19)

When ϵ = 0, we recover the fundamental characterization of the minimum risk for stan-

dard (non-adversarial) classification in (2.7). Theorem 6 can be rephrased as

inf
f Borel

sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̂ϕ(f,P′
0,P′

1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
f Borel

R̂ϕ(f,P′
0,P′

1) (2.20)
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where

R̂ϕ(f,P′
0,P′

1) =

∫
ϕ(f)dP′

1 +

∫
ϕ(−f)dP′

0

As discussed in Pydi and Jog [52], this result has an appealing game theoretic interpreta-

tion: adversarial learning with a surrogate risk can be though of as a zero-sum game between

the learner who selects a function f and the adversary who chooses perturbations through

P′
0 and P′

1. Furthermore, the player to pick first does not have an advantage.

Additionally, (2.20) suggest that training adversarially robust classifiers could be accom-

plished by optimizing over primal functions f and dual distributions P′
0,P′

1 simultaneously.

A consequence of Theorem 6 is the following complementary slackness conditions for

optimizers f ∗,P∗
0,P∗

1:

Theorem 7 (Complementary Slackness). The function f ∗ is a minimizer of Rϵ
ϕ and (P∗

0,P∗
1)

is a maximizer of R̄ϕ over the W∞ balls around P0 and P1 iff the following hold:

1)

∫
ϕ ◦ f ∗dP∗

1 =

∫
Sϵ(ϕ(f

∗))dP1 and

∫
ϕ ◦ −f ∗dP∗

0 =

∫
Sϵ(ϕ(−f ∗))dP0 (2.21)

2) If we define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗, then

η∗(x)ϕ(f ∗(x)) + (1− η∗(x))ϕ(−f ∗(x)) = C∗
ϕ(η

∗(x)) P∗-a.e. (2.22)

This theorem implies that every minimizer f ∗ of Rϵ
ϕ and every maximizer (P∗

0,P∗
1) of

R̄ϕ forms a primal-dual pair. The condition (2.21) states that every maximizer of R̄ϕ is

an optimal adversarial attack on f ∗ while the condition (2.22) states that every minimizer

f ∗ of Rϵ
ϕ also minimizes the conditional risk Cϕ(η

∗, ·) under the distribution of optimal

adversarial attacks. Explicitly: (2.22) implies that every minimizer f ∗ minimizes the loss

R̂ϕ(f,P∗
0,P∗

1) =
∫
C(η∗(x), f(x))dP∗ in a pointwise manner P∗-a.e., or in other words, the
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function f ∗ minimizes the standard surrogate risk with respect to the optimal adversarially

perturbed distributions. This fact is the relation (2.6) with respect to the measures P∗
0,P∗

1

that maximize the dual R̄ϕ.

This interpretation of Theorems 6 and 7 shed light on the phenomenon of transfer attacks.

These theorems suggests that adversarial examples are a property of the data distribution

rather than a specific model. Later results in the paper even show that there are maximizers

of R̄ϕ that are independent of the choice of loss function ϕ (see Lemma 26). Theorem 7

specifically states that every maximizer of R̄ϕ is actually an optimal adversarial attack on

every minimizer of Rϵ
ϕ. Notably, this statement is indepent of the choice of minimizer of

Rϵ
ϕ. Because neural networks are highly expressive model classes, one would hope that some

neural net could achieve adversarial error close to inff R
ϵ
ϕ(f). If f ∗ is a minimizer of Rϵ

ϕ

and g is a neural net with Rϵ
ϕ(g) ≈ Rϵ

ϕ(f
∗), one would expect that an optimal adversarial

attack against f ∗ would be a successful attack on g as well. Notice that in this discussion,

the adversarial attack is independent of the neural net g. A method for calculating these

optimal adversarial attacks is an open problem.

Finally, to demonstrate that Theorem 7 and the preceding discussion is non-vacuous, we

prove the existence of primal and dual optimizers along with results that elaborate on their

structure.

Theorem 8. Let ϕ be a lower-semicontinuous loss function. Then there exists a maximizer

(P∗
0,P∗

1) to R̄ϕ over the set B∞
ϵ (P0)× B∞

ϵ (P1).

Theorem 3.5 of [33] implies that when the norm ∥ · ∥ is strictly convex and P0,P1 are

absolutely continuous with respect to Lebesgue measure, the optimal P∗
0,P∗

1 of Theorem 8 are

induced by a transport map. Corollary 3.11 of [33] further implies that these transport maps

are continuous a.e. with respect to the Lebesgue measure µ. As the ℓ∞ metric is commonly

used in practice, whether there exist maximizers of the dual of this type for non-strictly

convex norms remains an attractive open problem.
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In analogy with (2.6) and (2.9) one would hope that due to the complementary slackness

condition (2.22), one could define a minimizer in terms of the conditional η∗(x). Notice,

however, that as this quantity is only defined P∗-a.e., verifying the other complementary

slackness condition (2.21) would be a challenge. To circumvent this issue, we construct a

function η̂ : Rd → [0, 1], defined on all of Rd, to which we can apply (2.9). Concretely, we

show that αϕ(η̂(x)) is always a minimizer of Rϵ
ϕ, with αϕ as defined in (2.8).

Theorem 9. There exists a Borel function η̂ : (suppP)ϵ → [0, 1] for which f ∗(x) = αϕ(η̂(x))

is a minimizer of Rϵ
ϕ for any ϕ with αϕ as in defined in (2.8). In particular, there exists a

Borel minimizer of Rϵ
ϕ.

In fact, we show that η̂ is a version of the conditional derivative dP∗
1/dP∗, where P∗

0,P∗
1

are the measures which maximize R̄ϕ independently of the choice of ϕ (see Lemma 24), as

described in the discussion preceding Theorem 8. The fact that the function η̂ is independent

of the choice of loss ϕ suggests that the minimizer of Rϵ
ϕ encodes some fundamental quality

of the distribution P0,P1.

Simultaneous work [36] also proves the existence of a minimizer to the primal Rϵ
ϕ along

with a statement on the structure of this minimizer. Their approach leverages prior results

on the adversarial Bayes classifier to construct a minimizer to the adversarial surrogate risk.

2.4.2 Outline of Main Argument

The central proof strategy of this paper is to apply the Fenchel-Rockafellar duality theorem.

This classical result relates the infimum of a convex functional with the supremum of a

concave functional. One can argue that R̄ϕ is concave (Lemma 12 below); however, the

primal Rϵ
ϕ is not convex for non-convex ϕ. Thus the Fenchel-Rockafellar theorem is applied

to a convex relaxation Θ of the primal Rϵ
ϕ.

The remainder of the paper then argues that minimizing Θ is equivalent to minimizing

Rϵ
ϕ. Notice that the Fenchel-Rockafellar theorem actually implies the existence of dual
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maximizers. We show that that dual maximizers of R̄ψ for ψ(α) = e−α satisfy certain nice

properties that are independent of the loss ψ. These properties then allow us to construct

the function η̂ present in Theorem 9 in addition to minimizers of Θ from the dual maximizers

of R̄ψ, for any loss ϕ. The construction of these minimizers guarantee that they minimize

Rϵ
ϕ in addition to Θ.

2.4.3 Paper Outline

Section 2.5 proves strong duality and complementary slackness theorems for R̄ϕ and Θ, the

convex relaxation of Rϵ
ϕ. Next, in Section 2.6, a version of the complementary slackness

result is used to prove the existence of minimizers to Θ. Subsequently, Section 2.7 shows the

equivalence between Θ and Rϵ
ϕ.

Appendix A.1 proves Theorem 1 and further discusses universal measurability. Next, Ap-

pendix A.2 proves all the results about theW∞-norm used in this paper. Appendix A.3 then

defines the function αϕ which is later used in the proof of several results. Appendices A.4,

A.5, A.6, and A.7.3 contain technical deferred proofs.

2.5 A Duality Result for Θ and R̄ϕ

2.5.1 Strong Duality

The fundamental duality relation of this paper follows from employing the Fenchel-Rockafellar

theorem in conjunction with the Riesz representation theorem, stated below for reference.

See e.g. [65] for more on this result.

Theorem 10 (Fenchel-Rockafellar Duality Theorem). Let E be a normed vector space E∗

its topological dual and Θ,Ξ two convex functionals on E with values in R∪{∞}. Let Θ∗,Ξ∗

be the Legendre-Fenchel transforms of Θ,Ξ respectively. Assume that there exists z0 ∈ E
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such that

Θ(z0) <∞,Ξ(z0) <∞

and that Θ is continuous at z0. Then

inf
z∈E

[Θ(z) + Ξ(z)] = sup
z∗∈E∗

[−Θ∗(z∗)− Ξ∗(−z∗)] (2.23)

and furthermore, the supremum on the right hand side is attained.

Let M(X) be the set of finite signed Borel measures on a space X and recall that Cb(X)

is the set of bounded continuous functions on the space X.

Theorem 11 (Riesz Representation Theorem). Let K be any compact subset of Rd. Then

the dual of Cb(K) is M(K).

See Theorem 1.9 of [65] and result 7.17 of [22] for more details.

Notice that in the Fenchel-Rockafellar theorem, the left-hand side of (2.23) is convex

while the right-hand side is concave. However, when ϕ is non-convex, Rϵ
ϕ is not convex. In

order to apply the Fenchel-Rockafellar theorem, we will relax the primal Rϵ
ϕ will to a convex

functional Θ.

We define Θ as

Θ(h0, h1) =

∫
Sϵ(h1)dP1 +

∫
Sϵ(h0)dP0 (2.24)

which is convex in h0, h1 due to the sub-additivity of the supremum operation. Notice that

one obtains Θ from Rϵ
ϕ by replacing ϕ ◦ f with h1 and ϕ ◦ −f with h0.

The functional Ξ will be chosen to restrict h0, h1 in the hope that at the optimal value,

h1 = ϕ(f) and h0 = ϕ(−f) for some f . Notice that if h1 = ϕ(f), h0 = ϕ(−f) then for all

η ∈ [0, 1],

ηh1(x) + (1− η)h0 = ηϕ(f)) + (1− η)ϕ(−f) ≥ C∗
ϕ(η).
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Thus we will optimize Θ over the set of functions Sϕ defined by

Sϕ =


(h0, h1) : h0, h1 : K

ϵ → R Borel, 0 ≤ h0, h1 and for

all x ∈ Rd, η ∈ [0, 1], ηh0(x) + (1− η)h1(x) ≥ C∗
ϕ(η)

 (2.25)

where K = supp(P0 ∪ P1). (Notice that the definition of Sϵ(g) in (2.11) assumes that the

domain of g must include Bϵ(x). Thus in order to define the integral
∫
Sϵ(h)dQ, the domain

of h must include (suppQ)ϵ.) Thus we define Ξ as

Ξ(h0, h1) =


0 if (h0, h1) ∈ Sϕ

+∞ otherwise

(2.26)

The following result expresses R̄ϕ as an infimum of linear functionals continuous with

respect to the weak topology on probability measures. This lemma will assist in the compu-

tation of Ξ∗. In the remainder of this section, M+(S) will denote the set of positive finite

Borel measures on a set S.

Lemma 12. Let K ⊂ Rd be compact, E = Cb(K
ϵ)× Cb(K

ϵ), and P′
0,P′

1 ∈ M+(K
ϵ). Then

inf
(h0,h1)∈Sϕ∩E

∫
h1dP′

1 +

∫
h0dP′

0 = R̄ϕ(P′
0,P′

1) (2.27)

Therefore, R̄ϕ is concave and upper semi-continuous on M+(K
ϵ)×M+(K

ϵ) with respect

to the weak topology on probability measures.

We sketch the proof and formally fill in the details in Appendix A.4. Let P′ = P′
0 + P′

1,

η′ = dP′
1/dP′. Then

∫
h1dP′

1 +

∫
h0dP′

0 =

∫
η′h1 + (1− η′)h0dP′
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Clearly, the inequality ≥ holds because η′h1 + (1 − η′)h0 ≥ C∗
ϕ(η

′) for all (h0, h1) ∈ Sϕ.

Equality is achieved at h1 = ϕ(αϕ(η
′)), h0 = ϕ(−αϕ(η′)), with αϕ as in (2.8). However, these

functions may not be continuous. In Appendix A.4, we show that h0, h1 can be approximated

arbitrarily well by elements of Sϕ ∩ E.

Lemma 13. Let ϕ be a non-increasing, lower semi-continuous loss function and let P0,P1

be compactly supported finite Borel measures. Let Sϕ be as in (2.25).

Then

inf
(h0,h1)∈Sϕ

Θ(h0, h1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1) (2.28)

Furthermore, there exist P∗
0,P∗

1 which attain the supremum.

Proof. We will show a version of (2.28) with the infimum taken over Sϕ ∩E, and then argue

that the same claim holds when the infimum is taken over Sϕ.

Notice that if h0, h1 are continuous, then Sϵ(h0), Sϵ(h1) are also continuous and
∫
Sϵ(h0)dQ,∫

Sϵ(h1)dQ are well-defined for every Borel Q. Hence we assume that P0, P1 are Borel mea-

sures rather than their completion.

Let K = supp(P0 + P1). We will apply the Fenchel-Rockafellar Duality Theorem to the

functionals given by (2.24) and (2.26) on the vector space E = Cb(K
ϵ) × Cb(K

ϵ) equipped

with the sup norm. By the Riesz representation theorem, dual of the space E is E∗ =

M(Kϵ)×M(Kϵ).

To start, we argue that the Fenchel-Rockafellar duality theorem applies to these func-

tionals. First, notice that if (h0, h1) ∈ E, then both h0, h1 are bounded so Θ(h0, h1) < ∞.

Furthermore, Θ is convex due to the subadditivity of supremum and Ξ is convex because the

constraint h0(x)+ (1− η)h1(x) ≥ C∗
ϕ(η) is linear in h0 and h1. Furthermore, Θ is continuous

on E because Θ is convex and bounded and E is open, see Theorem 2.14 of [7].

Because the constant function (C∗
ϕ(1/2), C

∗
ϕ(1/2)) is in Sϕ, Ξ is not identically ∞ and

therefore the Fenchel-Rockafellar theorem applies.
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Clearly infE Θ(h0, h1) + Ξ(h0, h1) reduces to the left-hand side of (2.28).

We now compute the dual of Ξ. Lemma 12 implies that

− Ξ∗(−P′
0,−P′

1) = − sup
(h0,h1)∈Sϕ∩E

−
∫
h0dP′

0 −
∫
h1dP′

1 (2.29)

=


R̄ϕ(P′

0,P′
1) if P′

i ≥ 0

−∞ otherwise

This computation implies that the term −Ξ∗(−P′
0,−P′

1) present in the Fenchel-Rockafellar

Theorem is not −∞ iff P′
0,P′

1 are positive measures. Next, notice that because Θ(h0, h1) <

+∞ for all (h0, h1) ∈ E, −Θ∗(P′
0,P′

1) is never +∞. Therefore, it suffices to compute Θ∗ for

positive measures P′
0,P′

1. Lemma 4 implies that for positive measures P′
0,P′

1,

Θ∗(P′
0,P′

1) = sup
h0,h1∈C0(Kϵ)

∫
h1dP′

1 +

∫
h0dP′

0 −
(∫

Sϵ(h0)dP0 +

∫
Sϵ(h1)dP1

)
= sup

h1∈C0(Kϵ)

(∫
h1dP′

1 −
∫
Sϵ(h1)dP1

)
+ sup

h0∈C0(Kϵ)

(∫
h0dP′

0 −
∫
Sϵ(h0)dP0+

)

=


0 P′

0,P′
1 positive measures, with W∞(P′

0,P0) ≤ ϵ and W∞(P′
1,P1) ≤ ϵ

+∞ P′
0,P′

1 positive measures, with either W∞(P′
0,P0) > ϵ or W∞(P′

1,P1) > ϵ

Therefore

sup
P′
0,P′

1∈M(Kϵ)

−Θ(P′
0,P′

1)− Ξ(−P′
0,−P′

1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)

and furthermore there exist measures P∗
0,P∗

1 maximizing the dual problem. Therefore the

Fenchel-Rockafellar Theorem implies that

inf
(h0,h1)∈Sϕ

Θ(h0, h1) ≤ inf
(h0,h1)∈Sϕ∩E

Θ(h0, h1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)
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The opposite inequality follows from the weak duality argument presented in (2.16) in Sec-

tion 2.4.1. See Lemma 125 of Appendix A.5 for a full proof.

Note that this proof does not easily extend to an unbounded domain X: for a non-

compact space, the dual of Cb(X) is much larger than M(X), and thus a naive application

of the Fenchel-Rockafellar Theorem would result in a different right-hand side than (2.28).

On the other hand, the Reisz representation theorem for an unbounded domain X states

that the dual of C0(X) is M(X), where C0(X) is the set of continuous bounded functions

vanishing at ∞. At the same time, if h0, h1 ∈ C0(X), then ηh1(x) + (1 − η)h0(x) becomes

arbitrarily small for large x so the constraint ηh1(x) + (1 − η)h0(x) ≥ C∗
ϕ(η) cannot hold

for all η. Thus if K is unbounded, Sϕ ∩ C0(X) = ∅ and the functional Ξ would be +∞

everywhere on C0(X), precluding an application of the Fenchel-Rockafellar Theorem.

However, Lemma 13 can be extended to distributions with arbitrary support via a simple

approximation argument. By Lemma 13, the strong duality result holds for the distributions

defined by Pn0 = P0

∣∣
Bn(0)

,Pn1 = P1

∣∣
Bn(0)

. One then shows strong duality by computing the

limit of the primal and dual problems as n→ ∞. We therefore obtain the following Lemma,

which is proved formally in Appendix A.5.

Lemma 14. Let ϕ be a non-increasing, lower semi-continuous loss function and let P0,P1

be finite Borel measures supported on Rd. Let Sϕ be as in (2.25). Then

inf
(h0,h1)∈Sϕ

Θ(h0, h1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)

Furthermore, there exist P∗
0,P∗

1 which attain the supremum.

33



2.5.2 Complementary Slackness

Using a standard argument, strong duality (Lemma 14) allows us to prove a version of the

complementary slackness theorem.

Lemma 15. Assume that P0,P1 are compactly supported. The functions h∗0, h
∗
1 minimize Θ

over Sϕ and (P∗
0,P∗

1) maximize R̄ϕ over B∞
ϵ (P0)× B∞

ϵ (P1) iff the following hold:

1) ∫
h∗1dP∗

1 =

∫
Sϵ(h

∗
1)dP1 and

∫
h∗0dP∗

0 =

∫
Sϵ(h

∗
0)dP0 (2.30)

2) If we define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗, then

η∗(x)h∗1(x) + (1− η∗(x))h∗0(x) = C∗
ϕ(η

∗(x)) P∗-a.e. (2.31)

This lemma is proved in Appendix A.6. Theorem 7 will later follow from this result.

To show that Lemma 15 is non-vacuous, one must prove that there exist minimizers to Θ

over Sϕ, which we delay to Sections 2.6 and 2.7. Notice that the application of the Fenchel-

Rockafellar Theorem in Lemma 13 actually implies the existence of dual maximizers in the

case of compactly supported P0,P1.

In fact, the complementary slackness conditions hold approximately for any maximizer

of R̄ϕ and any minimizing sequence of Θ. This result is essential for proving the existence

of minimizers to Θ.

Lemma 16. Let (hn0 , h
n
1 ) be a minimizing sequence for Θ over Sϕ: limn→∞ Θ(hn0 , h

n
1 ) =

inf(h0,h1)∈Sϕ Θ(h0, h1). Then for any maximizer of the dual problem (P∗
0,P∗

1), the following

hold:

1)

lim
n→∞

∫
Sϵ(h

n
0 )dP0 −

∫
hn0dP∗

0 = 0, lim
n→∞

∫
Sϵ(h

n
1 )dP1 −

∫
hn1dP∗

1 = 0 (2.32)
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2) If we define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗

lim
n→∞

∫
η∗hn1 + (1− η∗)hn0 − C∗

ϕ(η
∗)dP∗ = 0 (2.33)

Proof. Let

m = inf
(h0,h1)∈Sϕ

Θ(h0, h1).

Then the fact that (hn0 , h
n
1 ) ∈ Sϕ and the duality result (Lemma 14) implies

∫
hn1dP∗

1 +

∫
hn0dP∗

0 =

∫
η∗hn1 + (1− η∗)hn0dP∗ ≥

∫
C∗
ϕ(η

∗)dP∗ = m (2.34)

Now pick δ > 0 and an N for which n ≥ N implies that Θ(hn0 , h
n
1 ) ≤ m+ δ. Then

m+ δ ≥
∫
Sϵ(h

n
1 )dP1 +

∫
Sϵ(h

n
0 )dP0 ≥

∫
η∗hn1 + (1− η∗)hn0dP∗ ≥ m.

Subtracting m =
∫
C∗
ϕ(η

∗)dP∗ from this inequality results in

δ ≥
∫
η∗hn1 + (1− η∗)hn0dP∗ −

∫
C∗
ϕ(η

∗)dP∗ ≥ 0 (2.35)

which implies (2.33). Next, (2.34) further implies

m−
∫
hn1dP∗

1 +

∫
hn0dP∗

0 ≤ 0 (2.36)

Now this inequality implies

δ ≥ δ +m−
(∫

hn1dP∗
1 +

∫
hn0dP∗

0

)
≥ Θ(hn1 , h

n
0 )−

(∫
hn1dP∗

1 +

∫
hn0dP∗

0

)
≥
(∫

Sϵ(h
n
1 )dP1 +

∫
Sϵ(h

n
0 )dP0

)
−
(∫

hn1dP∗
1 +

∫
hn0dP∗

0

)
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However, Lemma 3 implies that both
∫
Sϵ(h

n
1 )dP1 −

∫
hn1dP∗

1,
∫
Sϵ(h

n
0 )dP0 −

∫
hn0dP∗

0 are

positive quantities. Therefore, we have shown that for any δ > 0, there is an N for which

n ≥ N implies that

δ >

∫
Sϵ(h

n
1 )dP1 −

∫
hn1dP∗

1 ≥ 0 and δ >

∫
Sϵ(h

n
0 )dP0 −

∫
hn0dP∗

0 ≥ 0

which implies (2.32).

An analogous approximate complementary slackness result typically holds in other appli-

cations of the Fenchel-Rockafellar theorem. Consider a convex optimization problem which

can be written as infxΘ(x)+Ξ(x) in such a way that the Fenchel-Rockafellar theorem applies

and for which Ξ and Θ∗ are indicator functions of the convex sets CP , CD respectively. Then

the Fenchel-Rockafellar Theorem states that

inf
x∈CP

Θ(x) = inf
x∈Cp

sup
y∈CD

⟨y, x⟩ = sup
y∈CD

inf
x∈CP

⟨y, x⟩ = sup
y∈CD

Ξ∗(y) (2.37)

Let y∗ be a maximizer of the dual problem and let m be the minimal value of Θ over CP .

If xk is a minimizing sequence of Θ, then for δ > 0 and sufficiently large k, δ +m > Θ(xk)

and thus by (2.37),

m+ δ > Θ(xk) = sup
y∈Cp

⟨y, xk⟩ ≥ ⟨y∗, xk⟩ ≥ inf
x∈CD

⟨y∗, x⟩ = inf
x∈CD

Ξ∗(x) = m (2.38)

and therefore limk→∞⟨y∗, xk⟩ = m. Condition (2.31) is this statement adapted to the

adversarial learning problem. Furthermore, subtracting Θ(xk) from (2.38) and taking the

limit k → ∞ results in limk→∞Θ(xk) − ⟨y∗, xk⟩ = 0. In our adversarial learning scenario,

this statement is equivalent to the conditions in (2.32) due to Lemma 3. Furthermore, just

like the standard complementary slackness theorems, the relations limk→∞⟨y∗, xk⟩ = m,
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limk→∞Θ(xk)− ⟨y∗, xk⟩ = 0 imply that xk is a minimizing sequence for Θ.

In the classical proof of the Kantorovich duality, one can choose Θ,Ξ of a form similar

to the discussion above, see for instance Theorem 1.3 of [65]. Using an argument similar

to (2.38), one can prove approximate complementary slackness for the Kantorovich problem

called the quantitative Knott-Smith criteria, see Theorems 2.15, 2.16 of [65] for further

discussion.

2.6 Existence of Minimizers to Θ over Sψ

After proving the existence of maximizers to the dual problem, we can now use the approxi-

mate complementary slackness conditions to prove the existence of minimizers to the primal.

The exponential loss ψ has certain properties that make it particularly easy to study:

Lemma 17. Let ψ(α) = e−α. Then C∗
ψ(η) = 2

√
η(1− η) and αψ(η) = 1/2 log(η/1 − η)

is the unique minimizer of Cψ(η, ·), with αψ(0), αψ(1) interpreted as −∞, +∞ respectively.

Furthermore, ∂C∗
ψ(η) is the singleton ∂C∗

ψ(η) = {ψ(αψ(η))− ψ(−αψ(η))}.

See Appendix A.7.1 for a proof. The existence of minimizers of Θ for the exponential loss

then follows from properties of Cψ. Let (hn0 , h
n
1 ) be a minimizing sequene of R̄ϕ. Because

the function Cψ is strictly concave, one can use the condition (2.33) to show that there

is a subsequence {nk} along which hnk0 (x′), hnk1 (x′) converge P∗
0,P∗

1-a.e. respectively. Due

to (2.32), Sϵ(h
nk
0 )(x), Sϵ(h

nk
1 ) also converge P0,P1-a.e. respectively along this subsequence.

This observation suffices to show the existence of functions that minimize Θ over Sψ.

The first step of this proof is to formalize this argument for sequences in R.

Lemma 18. Let (an, bn) be a sequence for which an, bn ≥ 0 and

ηan + (1− η)bn ≥ C∗
ψ(η) for all η ∈ [0, 1] (2.39)
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and

lim
n→∞

η0an + (1− η0)bn = C∗
ψ(η0) (2.40)

for some η0. Then limn→∞ an = ψ(αψ(η0)) and limn→∞ bn = ψ(−αψ(η0)).

Notice that if ηa + (1 − η)b ≥ C∗
ψ(η) and η0a + (1 − η0)b = C∗

ψ(η0), then this lemma

implies that a = ψ(αψ(η0)) and b = ψ(−αψ(η0)).

To prove Lemma 18, we show that all convergent subsequences of {an} and {bn} must

converge to a and b that satisfy η0a + (1 − η0)b = C∗
ϕ(η0) and a − b ∈ ∂C∗

ψ(η0). As the set

∂C∗
ψ(η0) is a singleton, the values a = ψ(αψ(η0)) and b = ψ(αψ(η0)) uniquely solve these

equations for a and b. Therefore the sequences {an} and {bn} must converge to a and b as

well. See Appendix A.7.2 for a formal proof. This result applied to a minimizing sequence

of Θ allows one to find a subsequence with certain convergence properties.

Lemma 19. Let (hn0 , h
n
1 ) be a minimizing sequence of Θ over Sψ. Then there exists a

subsequence nk for which Sϵ(h
nk
1 ), Sϵ(h

nk
0 ) converge P1, P0-a.e. respectively.

Proof. Let P∗
0,P∗

1 be maximizers of the dual problem. Let γi be the coupling between Pi,P∗
i

with supp γi ⊂ ∆ϵ.

Then (2.33) of Lemma 16 implies that

lim
n→∞

∫
η∗(x′)hn1 (x

′) + (1− η∗(x′))hn0 (x
′)− Cψ(η

∗(x′))d(γ1 + γ0)(x,x
′) = 0

and (2.32) implies that

lim
n→∞

∫
Sϵ(h

n
1 )(x)− hn1 (x

′)dγ1(x,x
′) = 0, lim

n→∞

∫
Sϵ(h

n
0 )(x)− hn0 (x

′)dγ0(x,x
′) = 0

Recall that on a bounded measure space, L1 convergence implies a.e. convergence along a
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subsequence (see Corollary 2.32 of [22]). Thus one can pick a subsequence nk along which

lim
k→∞

η∗(x′)hnk1 (x′) + (1− η∗(x′))hnk0 (x′)− Cψ(η
∗(x′)) = 0 (2.41)

γ1 + γ0-a.e. and

lim
k→∞

Sϵ(h
nk
1 )(x)− hnk1 (x′) = 0, lim

k→∞
Sϵ(h

nk
0 )(x)− hnk0 (x′) = 0 (2.42)

γ1, γ0-a.e. respectively.

Furthermore, ηhn1 +(1−η)hn0 ≥ C∗
ψ(η) for all η ∈ [0, 1]. Thus (2.41) and Lemma 18 imply

that h1nk converges to ψ(αψ(η
∗)) and h0nk converges to ψ(−αψ(η

∗)) γ0+γ1-a.e. Equation 2.42

then implies that Sϵ(h
nk
1 )(x), Sϵ(h

nk
0 )(x) converge γ1, γ0 -a.e. respectively. Because P1,P0

are marginals of γ1, γ0, this statement implies the result.

The existence of a minimizer then follows from the fact that Sϵ(h
nk
1 ) converges. The next

lemma describes how the Sϵ operation interacts with lim infs and lim sups.

Lemma 20. Let hn be any sequence of functions. Then the sequence hn satisfies

lim inf
n→∞

Sϵ(hn) ≥ Sϵ(lim inf
n→∞

hn) (2.43)

and

lim sup
n→∞

Sϵ(hn) ≥ Sϵ(lim sup
n→∞

hn) (2.44)

See Appendix A.7.3 for a proof.

Finally, we prove that there exists a minimizer to Θ over Sψ.

Lemma 21. There exists a minimizer (h∗0, h
∗
1) to Θ over the set Sψ.

Proof. Let (hn0 , h
n
1 ) be a sequence minimizing Θ over Sψ.
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Lemma 19 implies that there is a subsequence {nk} for which limk→∞ Sϵ(h
nk
0 ) exists

P0-a.e.

Thus

lim sup
k→∞

Sϵ(h
nk
0 ) = lim inf

k→∞
Sϵ(h

nk
0 ) P0-a.e. (2.45)

Next, we will argue that the pair (lim supk h
nk
0 , lim infk h

nk
1 ) is in Sψ. Because

C∗
ψ(η) ≤ ηhnk1 + (1− η)hnk0 ,

one can conclude that

C∗
ψ(η) ≤ η lim inf

k→∞
(hnk1 + (1− η)hnk0 ) ≤ η lim inf

k→∞
hnk1 + (1− η) lim sup

k→∞
hnk0 .

Define

h∗1 = lim inf
k

hnk1 , h∗0 = lim sup
k

hnk0

Now Fatou’s lemma, Lemma 20, and Equation 2.45 imply that

lim
k→∞

Θ(hnk0 , h
nk
1 ) ≥

∫
lim inf
k→∞

Sϵ(h
nk
1 )dP1 +

∫
lim inf
k→∞

Sϵ(h
nk
0 )dP0 (Fatou’s Lemma)

=

∫
lim inf
k→∞

Sϵ(h
nk
1 )dP1 +

∫
lim sup
k→∞

Sϵ(h
nk
0 )dP0 (Equation 2.45)

≥
∫
Sϵ(lim inf

k→∞
hnk1 )dP1 +

∫
Sϵ(lim sup

k→∞
hnk0 )dP0 (Lemma 20)

=

∫
Sϵ(h

∗
1)dP1 +

∫
Sϵ(h

∗
0)dP0

Therefore, (h∗0, h
∗
1) must be a minimizer.

40



2.7 Reducing Θ to Rϵ
ϕ

Using the properties of C∗
ψ(η), we showed in the previous section that there exist minimizers

to Θ over the set Sψ. The inequality ηh∗1 + (1 − η∗)h∗0 ≥ C∗
ψ(η) together with (2.31) imply

that h∗1(x)−h∗0(x) is a supergradient of C∗
ψ(η

∗(x)) and thus h∗1−h∗0 = (C∗
ψ)

′(η). This relation

together with (2.31) provides two equations in two variables that can be uniquely solved for

h∗0, h
∗
1, resulting in h∗0 = ψ ◦ −αψ(η∗), h∗1 = ψ ◦ αψ(η∗).

Next, primal minimizers of Θ over Sϕ for any ϕ will be constructed from the dual max-

imizers P∗
0, P∗

1 of R̄ψ. Because αψ(η) = 1/2 log(η/1 − η) is a strictly increasing function,

the compositions ψ ◦ αψ, ψ ◦ −αψ are strictly monotonic. Thus the complementary slack-

ness condition (2.30) applied to h∗1 = ψ(αψ(η
∗)), h∗0 = ψ(−αψ(η∗)) implies that suppP∗

1 is

contained in the set of points x′ for which η∗ assumes its infimum over some ϵ-ball at x′

and suppP∗
0 is contained in the set of points x′ where η∗ assumes its supremum over some

ϵ-ball at x′. Thus, the functions ϕ ◦ αϕ(η∗), ϕ ◦ −αϕ(η∗) satisfy (2.30) for the loss ϕ. The

definition of αϕ further implies they satisfy (2.31). Therefore, Lemma 15 implies that for

any ϕ, h∗1 = ϕ ◦ αϕ(η∗), h∗0 = ϕ ◦ αϕ(η∗) are primal optimal and P∗
0, P∗

1 are dual optimal!

This reasoning about η∗ is technically wrong but correct in spirit. Because η∗ is a Radon-

Nikodym derivative, it is only defined P∗-a.e. As a result, the supremum over an ϵ-ball of

the function ϕ(αψ(η
∗)) is not well-defined. The solution is to replace η∗ in the discussion

above by a function η̂ that is defined everywhere. The function η̂ is actually a version of the

Radon-Nikodym derivative dP∗
1/dP∗. The next two lemmas describe how one constructs this

function η̂.

The next two lemmas discuss the analog of the c transform for the Kantorovich problem

in optimal transport (see for instance Chapter 1 of [55] or Section 2.5 of [65]).

Lemma 22. Assume that h0, h1 ≥ 0 and (h0(x), h1(x)) satisfy ηh1 + (1− η)h0 ≥ C∗
ϕ(η) for
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all η. Then if we define h
C∗
ϕ

0 via

h
C∗
ϕ

0 = sup
η∈[0,1)

C∗
ϕ(η)− ηh1

1− η
(2.46)

then h
C∗
ϕ

0 ≤ h0 while and h1+(1−η)hC
∗
ϕ

0 ≥ C∗
ϕ(η) for all η, and h

C∗
ϕ

0 is the smallest function h0

for which (h0, h1) ∈ Sϕ. Furthermore, the function h
C∗
ϕ

0 is Borel and there exists a function

η̄ : Rd → [0, 1] for which η̄(x)h1(x) + (1− η̄(x))h
C∗
ϕ

1 (x) = C∗
ϕ(η̄(x)).

Proof. For convenience, set h̃0 = h
C∗
ϕ

1 . Notice that h̃0 ≥ 0 because the right-hand side of

(2.46) evaluates to 0 at η = 0. We will show that h̃0 is Borel and that (h̃0, h1) is a feasible

pair.

Next, Notice that the map

G(η, α) =


C∗
ϕ(η)−ηα
1−η if η < 1

limη→1
C∗
ϕ(η)−ηα
1−η if η = 1

(2.47)

is continuous in η. Thus, the supremum in (2.46) can be taken over the countable set

Q∩[0, 1] and hence the function h̃0(x) = supη∈[0,1)∩QG(η, h1(x)) is Borel measurable. Because

G(η, h1(x)) is continuous in η for each fixed x, G(·, h1(x)) assumes its maximum on η ∈ [0, 1]

for each fixed x. Thus there exists a function η̄(x) that maps x to a maximizer of G(·, h1(x)).

For this function η̄(x), one can conclude that h̃0(x) = G(η̄(x),x) and hence

η̄(x)h1(x) + (1− η̄(x))h̃0(x) = C∗
ϕ(η̄(x)). (2.48)

Equation 2.48 implies that if f(x) < h̃0(x) at any x, then ηh1(x)+(1−η)f(x) < C∗
ϕ(η(x))

so (f, h1) is not in the feasible set Sϕ. Therefore, h̃0 is the smallest function f for which

(f, h1) ∈ Sϕ.
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Next we use this result to define an extension of η∗ to all of Rd.

Lemma 23. There exist a Borel minimizer (h∗0, h
∗
1) to Θ over Sψ for which

η̂(x)h∗1(x) + (1− η̂(x))h∗0(x) = C∗
ψ(η̂(x)) (2.49)

for all x and some Borel measurable function η̂ : (suppP)ϵ → [0, 1].

Proof. Let (h0, h1), be an arbitrary Borel minimizer to the primal (Lemma 21 implies that

such a minimizer exists). Set h∗1 = h1 and h∗0 = h
C∗
ψ

1 . Then Lemma 22 implies that h∗0 ≤ h0,

so (h∗0, h
∗
1) is also optimal and ηh∗1 + (1 − η)h∗0 ≥ C∗

ψ(η) for all η. Furthermore, Lemma 22

implies that there is a function η̂ for which η̂(x)h∗1(x) + (1− η̂(x))h∗0(x) = C∗
ψ(η̂(x)).

It remains to show that η̂ is Borel measurable. We will express η̂(x) in terms of h∗1(x),

and because h∗1(x) is Borel measurable, it will follow that η̂ is Borel measurable as well.

Because ηh∗1(x) + (1 − η)h∗0(x) ≥ C∗
ψ(η) with equality at η = η̂(x), it follows that h∗1(x) −

h∗0(x) is a supergradient of C∗
ψ at η = η̂(x). Thus Lemma 17 implies that h∗1 − h∗0 =

(1 − 2η̂)/
√
η̂(1− η̂) ⇔ h∗1 = h∗0 + (1 − 2η̂)/

√
η̂(1− η̂). Plugging this expression and the

formula C∗
ψ(η) = 2

√
η(1− η) into the relation η̂h∗1+(1−η̂)h∗0 = C∗

ψ(η̂) results in the equation

h∗0+ η̂(1− 2η̂)/
√
η̂(1− η̂) = 2

√
η̂(1− η̂). Solving for η̂ then results in η̂ = (h∗0)

2/(1+ (h∗0)
2).

Because h∗0 is Borel measurable, η̂ is measurable as well.

Notice that this result together with Lemma 18 immediately implies that h∗1 = ψ(αψ(η̂))

and h∗1 = ψ(−αψ(η̂)), immediately proving that minimizing Θ over Sψ is equivalent to

minimizing Rψ. Next, this observation is extended to arbitrary losses using properties of η̂.

Because both ψ and αψ are strictly monotonic, η̂ interacts in a particularly nice way with

maximizers of the dual problem:

Lemma 24. Let P∗
0,P∗

1 be any maximizer of R̄ψ over B∞
ϵ (P0)× B∞

ϵ (P1). Set P∗ = P∗
0 + P∗

1,

η∗ = dP∗
1/dP∗. Let η̂ be defined as in Lemma 23. Then η̂ = η∗ P∗-a.e.
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Furthermore, let γi be a coupling between Pi,P∗
i with supp γi ⊂ ∆ϵ. Then

supp γ1 ⊂ {(x,x′) : inf
∥y−x∥≤ϵ

η̂(y) = η̂(x′)} (2.50)

supp γ0 ⊂ {(x,x′) : sup
∥y−x∥≤ϵ

η̂(y) = η̂(x′)} (2.51)

The statement η̂ = η∗ P∗-a.e. implies that η̂ is in fact a version of the Radon-Nikodym

derivative dP∗
1/dP∗.

For convenience, in this proof, we introduce the notation

Iϵ(f)(x) = inf
∥y−x∥≤ϵ

f(y).

Proof. Let h∗0, h
∗
1 be the minimizer described by Lemma 23. Then Lemma 18 implies that

h∗1 = ψ(αψ(η̂)) and h
∗
0 = ψ(−αψ(η̂)).

The complementary slackness condition (2.31) implies that η∗h∗1+(1−η∗)h∗0 = C∗
ψ(η

∗) P∗-

a.e., and thus Lemma 18 implies that h∗1 = ψ(αψ(η
∗)) and h∗0 = ψ(αψ(η

∗)) P∗-a.e. Therefore,

ψ(αψ(η
∗)) = ψ(αψ(η̂)) P∗-a.e. Now because the functions ψ, αψ are strictly monotonic, they

are invertible. Thus it follows that η̂ = η∗ P∗-a.e.

The complementary slackness condition (2.30) states that

∫
Sϵ(hi)(x)− h∗i (x

′)dγi = 0.

Therefore,

Sϵ(ψ(αψ(η̂)))(x) = ψ(αψ(η̂(x
′)) γ1-a.e. and Sϵ(ψ(−αψ(η̂)))(x) = ψ(−αψ(η̂(x′)) γ0-a.e.
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which implies

ψ(αψ(Iϵ(η̂)(x))) = ψ(αψ(η̂(x
′)) γ1-a.e. and ψ(−αψ(Sϵ(η̂)(x))) = ψ(−αψ(η̂(x′)) γ0-a.e.

Now ψ, αψ are both strictly monotonic and thus invertible. Therefore

Iϵ(η̂)(x) = η̂(x′) γ1-a.e. and Sϵ(η̂)(x) = η̂(x′) γ0-a.e.

Next, the relation (2.49) suggests that h∗1 = ϕ ◦ f ∗, h∗0 = ϕ ◦ −f ∗, where f ∗ is a function

satisfying Cψ(η̂(x), f
∗(x)) = C∗

ψ(η̂(x)). In fact, Lemma 24 implies that this relation holds

for all loss functions, and not just the exponential loss ψ. To formalize this idea, we prove

the following result about minimizers of Cψ(η, ·) in Appendix A.3:

Lemma 25. Fix a loss function ϕ and let αϕ(η) be as in (2.8). Then αϕ maps η to the

smallest minimizer of Cϕ(η, ·). Furthermore, the function αϕ(η) non-decreasing in η.

Finally, we use the complementary slackness conditions of Lemma 15 to construct a

minimizer (h∗0, h
∗
1) to Θ over Sϕ for which h∗1 = ϕ ◦ f ∗, h∗0 = ϕ ◦ −f ∗ for some function f ∗.

Lemma 26. Let ψ = e−α be the exponential loss and let ϕ be any arbitrary loss. Let P∗
0,P∗

1

be any maximizer of R̄ψ over B∞
ϵ (P0) × B∞

ϵ (P1). Define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗.

Let η̂ be defined as in Lemma 23.

Then h∗0 = ϕ(−αϕ(η̂)), h∗1 = ϕ(αϕ(η̂)) minimize Θ over Sϕ and (P∗
0,P∗

1) maximize R̄ϕ

over B∞
ϵ (P0)× B∞

ϵ (P1).

Thus there exists a Borel minimizer to Rϵ
ϕ and inff R

ϵ
ϕ(f) = inf(h0,h1)∈Sϕ Θ(h0, h1).

Proof. We will verify the complementary slackness conditions of Lemma 15.

45



Lemma 24 implies that η̂ = η∗ P∗-a.e. Therefore, P∗-a.e.,

C∗
ϕ(η

∗) = C∗
ϕ(η̂) = η̂h1 + (1− η̂)h0 = η∗h1 + (1− η∗)h0

This calculation verifies the complementary slackness condition (2.31).

We next verify the other complementary slackness condition (2.30). Let γi be a coupling

between Pi,P∗
i with supp γi ⊂ ∆ϵ. Next, because ϕ◦αϕ, ϕ◦−αϕ are monotonic, the conditions

(2.50) and (2.51) imply that

∫
ϕ(αϕ(η̂))dP∗

1 =

∫
ϕ(αϕ(η̂(x

′)))dγ1(x,x
′)

=

∫
Sϵ(ϕ(αϕ(η̂)))(x)dγ1(x,x

′) =

∫
Sϵ(ϕ(αϕ(η̂)))dP1

∫
ϕ(−αϕ(η̂))dP∗

0 =

∫
ϕ(−αϕ(η̂(x′)))dγ0(x,x

′)

=

∫
Sϵ(ϕ(−αϕ(η̂)))(x)dγ0(x,x′) =

∫
Sϵ(ϕ(−αϕ(η̂)))dP0

This calculation verifies the complementary slackness condition (2.30).

Theorems 6 and 9 immediately follow from Lemmas 14 and 26.

2.8 Conclusion

We initiated the study of minimizers and minimax relations for adversarial surrogate risks.

Specifically, we proved that there always exists a minimizer to the adversarial surrogate risk

when perturbing in a closed ϵ-ball and a maximizer to the dual problem. Just like the results

of [52], our minimax theorem provides an interpretation of the adversarial learning problem

as a game between two players. This theory helps explain the phenomenon of transfer
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attacks. We hope the insights gained from this research will assist in the development of

algorithms for training classifiers robust to adversarial perturbations.

Acknowledgements

Natalie Frank was supported in part by the Research Training Group in Modeling and

Simulation funded by the National Science Foundation via grant RTG/DMS – 1646339.

Jonathan Niles-Weed was supported in part by a Sloan Research Fellowship.

47



3 — The Uniqueness of the

Adversarial Bayes Classifier

3.1 Introduction

A crucial reliability concern for machine learning models is their susceptibility to adversarial

attacks. Neural nets are particularly sensitive to small perturbations to data. For instance,

[14, 58] show that perturbations imperceptible to the human eye can cause a neural net to

misclassify an image. In order to reduce the susceptibility of neural nets to such attacks,

several methods have been proposed to minimize the adversarial classification risk, which

incurs a penalty when a data point can be perturbed into the opposite class. However,

state-of-the-art methods for minimizing this risk still achieve significantly lower accuracy

than standard neural net training on simple datasets, even for small perturbations. For

example, on the CIFAR10 dataset, [48] achieves 71% robust accuracy for ℓ∞ perturbations

size 8/255 while [21] achieves over 99% accuracy without an adversary.

In the setting of standard (non-adversarial) classification, a Bayes classifier is defined as a

minimizer of the classification risk. This classifier simply predicts the most probable class at

each point. If multiple classes have the same probability, then the Bayes classifier may not be

unique. The Bayes classifier has been a helpful tool in the development of machine learning

classification algorithms [32, Chapter 2.4]. On the other hand, in the adversarial setting,
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computing minimizers of the adversarial classification risk in terms of the data distribution

is a challenging problem. These minimizers are referred to as adversarial Bayes classifiers.

Prior work [1, 11, 50] calculates these classifiers by first proving a minimax principle relating

the adversarial risk with a dual problem, and then showing that the adversarial risk of a

proposed set matches the dual risk of a point in the dual space.

In this paper, we propose a new notions of ‘uniqueness’ and ‘equivalence’ for adversarial

Bayes classifiers in the setting of binary classification under the evasion attack. In the

non-adversarial setting, two classifiers are equivalent if they are equal a.e. with respect to

the data distribution, and one can show that any two equivalent classifiers have the same

classification risk. The Bayes classifier is unique if any two minimizers of the classification

risk are equivalent. However, under this notion of equivalence, two equivalent sets can have

different adversarial classification risks. This discrepancy necessitates a new definition of

equivalence for adversarial Bayes classifiers.

Further analyzing these new notions of uniqueness and equivalence in one dimension re-

sults in a method for calculating all possible adversarial Bayes classifiers for a well-motivated

family of distributions. We apply this characterization to demonstrate that certain forms of

regularity in adversarial Bayes classifiers improve as ϵ increases. Subsequent examples show

that different adversarial Bayes classifiers achieve varying levels of (standard) classification

risk. These examples illustrate that the accuracy-robustness tradeoff could be mitigated by

a careful selection of an adversarial Bayes classifier (see [74] for a further discussion of this

phenomenon). Followup work [24] demonstrates that the concepts presented in this paper

have algorithmic implications— when the data distribution is absolutely continuous with

respect to Lebesgue measure, adversarial training with a convex loss is adversarially consis-

tent iff the adversarial Bayes classifier is unique, according to the new notion of uniqueness

defined in this paper. Hopefully, a better understanding of adversarial Bayes classifiers will

aid the design of algorithms for robust classification.
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3.2 Background

3.2.1 Adversarial Bayes Classifiers

We study binary classification on the space Rd with labels {−1,+1}. The measure P0

describes the probability of data with label −1 occurring in regions of Rd while the measure

P1 describes the probability of data with label +1 occurring in regions of Rd. Most of our

results will assume that P0 and P1 are absolutely continuous with respect to the Lebesgue

measure µ. Vectors in Rd will be denoted in boldface (x). Many of the results in this paper

focus on the case d = 1 for which we will use non-bold letters (x). The functions p0 and p1

will denote the densities of P0, P1 respectively. A classifier is represented as the set of points

A with label +1. The classification risk of the set A is then the proportion of incorrectly

classified data:

R(A) =

∫
1ACdP1 +

∫
1AdP0. (3.1)

A minimizer of the classification risk is called a Bayes classifier. Analytically finding

the minimal classification risk and Bayes classifiers is a straightforward calculation: Let

P = P0 + P1, representing the total probability of a region, and let η be the the Radon-

Nikodym derivative η = dP1/dP, the conditional probability of the label +1 at a point x.

Thus one can re-write the classification risk is

R(f) =

∫
C(η(x), f(x))dP(x). (3.2)

and the minimum classification risk as inff R(f) =
∫
C∗(η)dP with

C(η, α) = η1α≤0 + (1− η)1α>0, C∗(η) = inf
α
C(η, α). (3.3)

The set B = {x : η(x) > 1− η(x)} is then a Bayes classifier. Note that the set of points
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with η(x) = 1/2 can be arbitrarily split between B and BC . The Bayes classifier is unique

if this ambiguous set has P-measure zero. Equivalently, the Bayes classifier is unique if

the value of P0(B) or P1(B
C) are the same for each Bayes classifier. When p0 and p1 are

continuous, points in the boundary of the Bayes classifier must satisfy

p1(x)− p0(x) = 0 (3.4)

A central goal of this paper is extending Equation (3.4) and a notion of uniqueness to

adversarial classification.

In the adversarial scenario an adversary tries to perturb the data point x into the opposite

class of a classifier A. We assume that perturbations are in a closed ϵ-ball Bϵ(0) in some

norm ∥ · ∥. The proportion of incorrectly classified data under an adversarial attack is the

adversarial classification risk,1

Rϵ(A) =

∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0 (3.5)

where the Sϵ operation on a function g is defined as

Sϵ(g)(x) = sup
∥h∥≤ϵ

g(x+ h). (3.6)

Under this model, a set A incurs a penalty wherever x ∈ A⊕ Bϵ(0), and thus we define

the ϵ-expansion of a set A as

Aϵ = A⊕Bϵ(0).

1In order to define the adversarial classification risk, one must show that Sϵ(1A) is measurable for mea-
surable A. A full discussion of this issue is delayed to Section 3.5.2.
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Hence the adversarial risk can also be written as

Rϵ(A) =

∫
1(AC)ϵdP1 +

∫
1AϵdP0

Prior work shows that there always exists minimizers to Equation (3.5), referred to as ad-

versarial Bayes classifiers [2, 11, 26, 52], see [26, Theorem 1] for an existence theorem that

matches the setup of this paper. Finding minimizers to Equation (3.5) is difficult because

unlike the standard classification problem, one cannot write the integrand of Equation (3.5)

so that it can be minimized in a pointwise manner. Furthermore, prior research [16] on the

structure of minimizers to Rϵ proves:

Lemma 27. If A1, A2 are two adversarial Bayes classifiers, then so are A1∪A2 and A2∩A1.

See Appendix B.1 for a proof.

Next, we focus on classifiers in one dimension as this case is simple to analyze yet still

yields non-trivial behavior. Prior work shows that when P0,P1 ≪ µ and p0, p1 are continuous,

if the adversarial Bayes classifier is sufficiently ‘regular’, one can find necessary conditions

describing the boundary of the adversarial Bayes classifier [64] . Assume that an adversarial

Bayes classifier A can be expressed as a union of disjoint intervals A =
⋃M
i=m(ai, bi), where the

m,M, ai, and bi can be ±∞. Notice that one can arbitrarily include/exclude the endpoints

{ai}, {bi} without changing the value of the adversarial risk Rϵ. If bi−ai > 2ϵ and ai+1−bi >

2ϵ, the adversarial classification risk can then be expressed as:

Rϵ(A) = · · ·+
∫ ai+ϵ

bi−1−ϵ
p1(x)dx+

∫ bi+ϵ

ai−ϵ
p0(x)dx+

∫ ai+1+ϵ

bi−ϵ
p1(x)dx+ · · · (3.7)

When the densities p0 and p1 are continuous, differentiating this expression in ai and bi

produces necessary conditions describing the adversarial Bayes classifier:

p1(ai + ϵ)− p0(ai − ϵ) = 0 (3.8a) p0(bi + ϵ)− p1(bi − ϵ) = 0 (3.8b)
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When ϵ = 0, these equations reduce to the condition describing the boundary of the

Bayes classifer in Equation (3.4). Prior work shows that when p0, p1 are well-behaved, this

necessary condition holds for sufficiently small ϵ.

Theorem 28 ([64]). Assume that p0, p1 are C1, the relation p0(x) = p1(x) is satisfied at

finitely many points x ∈ suppP, and that at these points, p′0(x) ̸= p′1(x). Then for suffi-

ciently small ϵ, there exists an adversarial Bayes classifier for which the ai and bi satisfy the

necessary conditions Equation (3.8).

For a proof, see the discussion of Equation (4.1) and Theorem 5.4 in [64]. A central goal

of this paper is producing necessary conditions analogous to Equation (3.8) that hold for all

ϵ.

3.2.2 Minimax Theorems for the Adversarial Classification

Risk

We analyze the properties of adversarial Bayes classifiers by expressing the minimal Rϵ risk in

a ‘pointwise’ manner analogous to Equation (3.2). The Wasserstein-∞ metric from optimal

transport and the minimax theorems in [26, 52] are essential tools for expressing Rϵ in this

manner.

Informally, the measure Q′ is in the Wasserstein-∞ ball of radius ϵ around Q if one

can produce the measure Q′ by moving points in Rd by at most ϵ under the measure Q.

Formally, the W∞ metric is defined in terms the set of couplings Π(Q,Q′) between two

positive measures Q,Q′:

Π(Q,Q′) = {γ positive measure on Rd × Rd : γ(A× Rd) = Q(A), γ(Rd × A) = Q′(A)}.

The Wasserstein-∞ distance between two positive finite measures Q′ and Q with Q(Rd) =
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Q′(Rd) is then defined as

W∞(Q,Q′) = inf
γ∈Π(Q,Q′)

ess sup
(x,y)∼γ

∥x− y∥.

The W∞ metric is in fact a metric on the space of measures, as it is a limit of the

Wasserstein-p metrics as p → ∞, see [17, 33] for details. We denote the ϵ-ball in the W∞

metric around a measure Q by

B∞
ϵ (Q) = {Q′ : Q′ Borel,W∞(Q,Q′) ≤ ϵ}

Prior work [52, 63] applies properties of the W∞ metric to find a dual problem to the

minimization of Rϵ: let P′
0,P′

1 be finite Borel measures and define

R̄(P′
0,P′

1) =

∫
C∗
(

dP′
1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1) (3.9)

where C∗ is defined by (3.3). Prior results [26, 52] relate this risk to Rϵ.

Theorem 29. Let R̄ be defined by (3.9). Then

inf
A Borel

Rϵ(A) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) (3.10)

and furthermore equality is attained for some Borel measurable A and P∗
1,P∗

0 withW∞(P∗
0,P0) ≤

ϵ and W∞(P∗
1,P1) ≤ ϵ.

See Theorem 1 of [26] for the statement above. This minimax theorem then implies com-

plementary slackness conditions that characterize optimal A and P∗
0,P∗

1. See Appendix B.2

for a proof.

Theorem 30. The set A is a minimizer of Rϵ and (P∗
0,P∗

1) is a maximizer of R̄ over the

W∞ balls around P0 and P1 iff W∞(P∗
0,P0) ≤ ϵ, W∞(P∗

1,P1) ≤ ϵ, and
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1) ∫
Sϵ(1AC )dP1 =

∫
1ACdP∗

1 and

∫
Sϵ(1A)dP0 =

∫
1AdP∗

0 (3.11)

2) If we define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗, then

η∗(y)1AC + (1− η∗(y))1A = C∗(η∗(y)) P∗-a.e. (3.12)

3.3 Main Results

Definitions

As discussed in Section 3.2.1, a central goal of this paper is describing the regularity of

adversarial Bayes classifiers and finding necessary conditions that hold for every ϵ in one

dimension.

As an example of non-regularity, consider a data distribution defined by p0(x) = 1/5, for

|x| ≤ 1/4 and zero elsewhere; and p1(x) = 3/5 for 1 ≥ |x| > 1/4 and zero elsewhere (see

Figure 3.2c for a depiction of p0 and p1). If ϵ = 1/8, an adversarial Bayes classifier is A = R.

However, any subset S of [−1/4 + ϵ, 1/4 − ϵ] satisfies Rϵ(SC) = Rϵ(R), and thus SC is an

adversarial Bayes classifier as well. (These claims are rigorously justified in Example 46.)

Consequently there are many adversarial Bayes classifiers lacking regularity, but they all

seem to be morally equivalent to the regular set A = R. The notion of equivalence up to

degeneracy encapsulates this behavior.

Definition 31. Two adversarial Bayes classifiers A1 and A2 are equivalent up to degeneracy

if for any Borel set E with A1 ∩ A2 ⊂ E ⊂ A1 ∪ A2, the set E is also an adversarial Bayes

classifier. We say that that the adversarial Bayes classifier is unique up to degeneracy if

any two adversarial Bayes classifiers are equivalent up to degeneracy.

Due to Lemma 27, to verify that an adversarial Bayes classifier is unique up to degeneracy,
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it suffices to show that if A1 and A3 are any two adversarial Bayes classifiers with A1 ⊂ A3,

then any set satisfying A1 ⊂ E ⊂ A3 is an adversarial Bayes classifier as well. In the

example presented above, the non-regular portion of the adversarial Bayes classifier could

only be some subset of D = [−1/4 + ϵ, 1/4 − ϵ]. The notion of ‘degenerate sets’ formalizes

this behavior.

Definition 32. A set D is degenerate for an adversarial Bayes classifier A if for all Borel

E with A−D ⊂ E ⊂ A ∪D, the set E is also an adversarial Bayes classifier.

Equivalently, a set D is degenerate for A if for all disjoint subsets D1, D2 ⊂ D, the set

A∪D1−D2 is also an adversarial Bayes classifier. In terms of this definition: the adversarial

Bayes classifiers A1 and A2 are equivalent up to degeneracy iff the set A1△A2 is degenerate

for either A1 or A2.

This paper first studies properties of these new notions, and then uses the resulting in-

sights to characterize adversarial Bayes classifiers in one dimension. To start, we show that

when P ≪ µ, equivalence up to degeneracy is in fact an equivalence relation (Theorem 33)

and furthermore, every adversarial Bayes classifier has a ‘regular’ representative when d = 1

(Theorem 35). The differentiation argument in Section 3.2.1 then produces necessary con-

ditions characterizing regular adversarial Bayes classifiers in one dimension (Theorem 37).

These conditions provide a tool for understanding how the adversarial Bayes classifier de-

pends on ϵ; see Theorem 39 and Propositions 47 to 50. Identifying all adversarial Bayes

classifiers then requires characterizing degenerate sets, and we provide such a criterion un-

der specific assumptions. Lastly, Theorem 34 provides alternative criteria for equivalence up

to degeneracy.

Theorem Statements

First, equivalence up to degeneracy is in fact an equivalence relation for many common

distributions.
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Theorem 33. If P ≪ µ, then equivalence up to degeneracy is an equivalence relation.

Example 54 shows that the assumption P ≪ µ is necessary for this result. Additionally,

uniqueness up to degeneracy generalizes certain notions of uniqueness for the Bayes classifier.

Theorem 34. Assume that P ≪ µ and ϵ > 0. Then the following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy

B) Amongst all adversarial Bayes classifiers A, either the value of P0(A
ϵ) is unique or the

value of P1((A
C)ϵ) is unique

C) There are maximizers P∗
0,P∗

1 of R̄ for which P∗(η∗ = 1/2) = 0, where P∗ = P∗
0+P∗

1 and

η∗ = dP∗
1/dP∗

When ϵ = 0, Item B) and Item C) are equivalent notions of uniqueness of the Bayes

classifier (see Section 3.2.1). However, if B1 and B2 are Bayes classifiers, any set E satisfying

B1∩B2 ⊂ E ⊂ B1∪B2 is always a Bayes classifier. Thus Item A) is not necessarily equivalent

to Items B) and C) when ϵ = 0. When P ̸≪ µ, Theorem 33 is false although Item B) and

Item C) are still equivalent (see Example 54 and Lemma 144). This equivalence suggests a

different notion of uniqueness for such distributions, see the Section 3.5.1 for more details.

A central result of this paper is that degenerate sets are the only form of non-regularity

possible in the adversarial Bayes classifier in one dimension.

Theorem 35. Assume that d = 1 and P0,P1 ≪ µ. Then any adversarial Bayes classifier

is equivalent up to degeneracy to an adversarial Bayes classifier A′ =
⊔M
i=m(ai, bi) with

bi − ai > 2ϵ and ai+1 − bi > 2ϵ.

This result motivates the definition of regularity in one dimension.

Definition 36. We say E ⊂ R is a regular set of radius ϵ if one can write both E and EC

as a disjoint union of intervals of length strictly greater than 2ϵ.
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We will drop ‘of radius ϵ’ when clear from the context.

When p0, p1 are continuous, the necessary conditions Equation (3.8) always hold for a

regular adversarial Bayes classifier.

Theorem 37. Let d = 1 and assume that P ≪ µ. Let A =
⋃M
i=m(ai, bi) be a regular

adversarial Bayes classifier.

If p0 is continuous at ai − ϵ (resp. bi + ϵ) and p1 is continuous at ai + ϵ (resp. bi − ϵ),

then ai (resp. bi) must satisfy the first order necessary conditions Equation (3.8a) (resp.

Equation (3.8b)). Similarly, if p0 is differentiable at ai−ϵ (resp. bi+ϵ) and p1 is differentiable

at ai + ϵ (resp. bi − ϵ), then ai (resp. bi) must satisfy the second order necessary conditions

Equation (3.13a) (resp. Equation (3.13b)).

p′1(ai + ϵ)− p′0(ai − ϵ) ≥ 0 (3.13a) p′0(bi + ϵ)− p′1(bi − ϵ) ≥ 0 (3.13b)

This theorem provides a method for identifying a representative of every equivalence class

of adversarial Bayes classifiers under equivalence up to degeneracy.

1) Let a, b be the set of points that satisfy the necessary conditions for ai, bi respectively

2) Form all possible open regular sets
⋃M
i=m(ai, bi) with ai ∈ a and bi ∈ b.

3) Identify which of these sets would be be equivalent up to degeneracy, if they were

adversarial Bayes classifiers.

4) Compare the risks of all non-equivalent sets from step 2) to identify which are adver-

sarial Bayes classifiers.

One only need to consider open sets in step 2) because the boundary of a regular ad-

versarial Bayes classifier is always a degenerate set when P ≪ µ, as noted in Section 3.2.1

(see Lemma 160 for a formal proof). Section 3.4 applies this procedure above to several

example distributions, see Example 41 for a crisp example. This analysis reveals interesting
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patterns. First, boundary points of the adversarial Bayes classifier are frequently within ϵ

of boundary points of the Bayes classifier. Proposition 49 and Proposition 50 prove that

this phenomenon occurs when either P is a uniform distribution on an interval or η ∈ {0, 1},

and Proposition 47 shows that this occurrence can reduce the accuracy-robustness tradeoff.

Second, uniqueness up to degeneracy often fails only for a small number of values of ϵ when

P0(R) ̸= P1(R). Understanding both of these occurrences in more detail is an open problem.

Theorem 37 is a tool for identifying a representative of each equivalence class of adver-

sarial Bayes classifiers under equivalence up to degeneracy. Can one characterize all the

members of a specific equivalence class? Answering this question requires understanding

properties of degenerate sets.

Theorem 38. Assume that d = 1, P ≪ µ, and let A be an adversarial Bayes classifier.

• If some interval I is degenerate for A and I is contained in suppP, then |I| ≤ 2ϵ.

• Conversely, the connected components of A and AC of length less than or equal to 2ϵ

are contained in a degenerate set.

• A countable union of degenerate sets is degenerate.

• Assume that suppP is an interval and P(η ∈ {0, 1}) = 0. If D is a degenerate set for

A, then D must be contained in the degenerate set (suppPϵ)C ∪ ∂A.

The first two bullets state that within the support of P, degenerate intervals must have

length at most 2ϵ, and conversely a component of size at most 2ϵ must be degenerate. The

last bullet implies that when suppP is an interval and P(η ∈ {0, 1}) = 0, the equivalence

class of an adversarial Bayes classifier A consists of all Borel sets that differ from A by a

measurable subset of (suppPϵ)C ∪ ∂A. Specifically, under these conditions, A cannot have a

degenerate interval contained in suppPϵ. This result is a helpful tool for identifying sets which

are equivalent up to degeneracy in step 3) of the procedure above. Both of the assumptions
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present in this fourth bullet are necessary— Example 46 presents a counterexample where

suppP is an interval and P(η ∈ {0, 1}) > 0 while Example 69 presents a counterexample for

which P(η ∈ {0, 1}) = 0 but suppP is not an interval.

Prior work [2, 16] shows that a certain form of regularity for adversarial Bayes classifiers

improves as ϵ increases. Theorem 35 is an expression of this principle: this theorem states

that each adversarial Bayes classifier A is equivalent to a regular set of radius ϵ, and thus

the regularity guarantee improves as ϵ increases. Another form of regularity also improves

as ϵ increases—the number of components of A and AC must decrease for well-behaved

distributions. Let comp(A) ∈ N ∪ {∞} be the number of connected components of a set A.

Theorem 39. Assume that d = 1, P ≪ µ, suppP is an interval I, and P(η ∈ {0, 1}) =

0. Let ϵ2 > ϵ1 and let A1, A2 be regular adversarial Bayes classifiers corresponding to

perturbation radiuses ϵ1 and ϵ2 respectively. Then comp(A1 ∩ Iϵ1) ≥ comp(A2 ∩ Iϵ2) and

comp(AC1 ∩ Iϵ1) ≥ comp(AC2 ∩ Iϵ2).

Section 3.6.3 actually proves a stronger statement: typically, no component of A1∩Iϵ1 can

contain a connected component of AC2 and no component of AC1 ∩Iϵ1 can contain a connected

component of A2. Due to the fourth bullet of Theorem 38, the assumptions of Theorem 39

imply that there is no degenerate interval within int suppPϵ, and hence every adversarial

Bayes classifier is regular. When computing adversarial Bayes classifiers, Theorem 39 and

the stronger version in Section 3.6.3 are useful tools in ruling out some of the sets in step 2)

of the procudure above without explicitly computing their risk.

When d > 1, we show:

Theorem 40. Let A be an adversarial Bayes classifier. Then A is equivalent up to degen-

eracy to a classifier A1 for which A1 = Cϵ and a classifier A2 for which AC2 = Eϵ, for some

sets C, E.

Further understanding uniqueness up to degeneracy in higher dimension is an open ques-
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tion.

Paper Outline

Section 3.4 applies the tools presented above to compute adversarial Bayes classifiers for a

variety of distributions. Subsequently, Section 3.5 presents properties of equivalence up to

degeneracy, including proofs of Theorems 33, 34 and 40. Sections 3.5.2 and 3.5.3 further

study degenerate sets, and these results are later applied in Section 3.6.1 to prove Theo-

rems 35 and 37. Section 3.6.2 further studies degenerate sets in one dimension to prove

Theorem 38. Lastly, Section 3.6.3 proves Theorem 39. Technical proofs and calculations

appear in the appendix, which is organized so that it can be read sequentially.

3.4 Examples

The examples below find the equivalence classes under equivalence up to degeneracy for

any ϵ > 0. Examples 42 and 46 demonstrate distributions for which the adversarial Bayes

classifier is unique up to degeneracy for all ϵ while Example 45 demonstrates a distribution

for which the adversarial Bayes classifier is not unique up to degeneracy for any ϵ > 0, even

though the Bayes classifier is unique. Example 41 and Example 44 describe intermediate

situations— uniqueness up to degeneracy fails only for a single value of ϵ in Example 44 and

only for sufficiently large ϵ in Example 41. Lastly, Example 46 presents an example with a

degenerate set.

Examples 45 and 46 exhibit situations where different adversarial Bayes classifiers have

varying levels of (standard) classification risk, for all ϵ contained in some interval. For such

distributions, a deliberate selection of the adversarial Bayes classifier would mitigate the

tradeoff between robustness and accuracy.

Furthermore, all the examples below except Example 42 exhibit a curious occurrence—
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Figure 3.1: (a) Gaussian Mixture with equal means and unequal variances as a in Example 42. (b)
Gaussian Mixture with equal weights, unequal means, and equal variances as in Example 41. (c) Gaussian
Mixture with unequal weights, unequal means, and equal variances.

the boundary of the adversarial Bayes classifier is within ϵ of the boundary of the Bayes

classifier. Propositions 49 and 50 state conditions under which this phenomenon must occur.

Next, Proposition 47 shows that if furthermore the Bayes and adversarial Bayes have the

same number of components, then one can bound the (standard) classification risk of the

adversarial Bayes classifier in terms of the Bayes risk and ϵ, suggesting a reduced robustness-

accuracy tradeoff.

The first two examples study Gaussian mixtures: p0 = (1− λ)gµ0,σ0(x), p1 = λgµ1,σ1(x),

where λ ∈ (0, 1) and gµ,σ is the density of a gaussian with mean µ and variance σ2. Prior

work [50] calculates a single adversarial Bayes classifier for λ = 1/2 and any value of µi and

σi. Below, our goal is to find all adversarial Bayes classifiers.

Example 41 (Gaussian Mixtures— equal variances, equal weights). Consider a gaussian

mixture with p0(x) = 1
2
· 1√

2πσ
e−(x−µ0)2/2σ2

, p1(x) = 1
2
· 1
2

1√
2πσ

e−(x−µ1)2/σ2
, and µ1 > µ0, as

depicted in Figure 3.1a. The solutions to the first order necessary conditions p1(b − ϵ) −

p0(b+ ϵ) = 0 and p1(a+ ϵ)− p0(a− ϵ) = 0 from Equation (3.8) are

a(ϵ) = b(ϵ) =
µ0 + µ1

2

However, one can show that b(ϵ) does not satisfy the second order necessary condition Equa-
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tion (3.13b) (see Appendix B.11.1). Thus the candidate sets for the Bayes classifier are R,

∅, and (a(ϵ),+∞). The fourth bullet of Theorem 38 implies that none of these sets could

be equivalent up to degeneracy. By comparing the adversarial risks of these three sets, one

can show that the set (a(ϵ),+∞) is an adversarial Bayes classifier iff ϵ ≤ µ1−µ0
2

and R, ∅

are adversarial Bayes classifiers iff ϵ ≥ µ1−µ0
2

(see Appendix B.11.1 for details). Thus the

adversarial Bayes classifier is unique up to degeneracy only when ϵ < µ1−µ0
2

.

When ϵ ≤ µ1−µ0
2

, the set (a(ϵ),+∞) is both a Bayes classifier and an adversarial Bayes

classifier, and thus there is no accuracy-robustness tradeoff. In this example, uniqueness up

to degeneracy fails for all sufficiently large ϵ. In contrast, the example below demonstrates

a distribution for which the adversarial Bayes classifier is unique up to degeneracy for all ϵ.

Example 42 (Gaussian Mixtures— equal means). Consider a Gaussian mixture with p0(x) =

1−λ√
2πσ0

e−x
2/2σ2

0 and p1(x) =
λ√
2πσ1

e−x
2/2σ2

1 . Assume that p0 has a larger variance than p1 but

that the peak of p0 is below the peak of p1, or other words, σ0 > σ1 but λ
σ1

> 1−λ
σ0

, see

Figure 3.1b for a depiction. Calculations similar to Example 41 show that the adversarial

Bayes classifier is unique up to degeneracy for every ϵ, and is given by (−b(ϵ), b(ϵ)) where

b(ϵ) =

ϵ
(

1
σ2
1
+ 1

σ2
0

)
+

√
4ϵ2

σ2
0σ

2
1
− 2

(
1
σ2
1
− 1

σ2
0

)
ln (1−λ)σ1

λσ0

1
σ2
1
− 1

σ2
0

. (3.14)

The computational details are similar to those of Example 41, and thus are delayed to

Appendix B.11.2.

Unlike Example 41, the Bayes and adversarial Bayes classifiers can differ substantially.

The next three examples are distributions for which suppP is a finite interval. In such

situations, it is often helpful to assume that ai, bi are not near ∂ suppP.

Lemma 43. Consider a distribution for which P ≪ µ and suppP is an interval. Then every

adversarial Bayes classifier is equivalent up to degeneracy to a regular adversarial Bayes

63



classifier A =
⋃M
i=m(ai, bi) for which the finite ai, bi are contained in int suppP−ϵ.

See Appendix B.11.3 for a proof.

Example 44 (Uniqueness fails for a single value of ϵ). Consider a distribution for which

p0 =


1
6
(1 + x) if |x| ≤ 1

0 otherwise

p1 =


1
3
(1− x) if |x| ≤ 1

0 otherwise

The only solutions to the first order necessary conditions p1(a + ϵ) − p0(a − ϵ) = 0 and

p0(b+ ϵ)− p1(b− ϵ) = 0 within suppPϵ are

a(ϵ) =
1

3
(1− ϵ) and b(ϵ) =

1

3
(1 + ϵ)

We first consider ϵ small enough so that both of these points lie in int suppP−ϵ, or in other

words, ϵ < 1/2. Then p′0(a(ϵ)−ϵ) = p′0(b(ϵ)+ϵ) = 1/6 and p′1(a(ϵ)+ϵ) = p′1(b(ϵ)−ϵ) = −1/3.

Consequently, the point a(ϵ) fails to satisfy the second order necessary condition Equa-

tion (3.13a). To identify all adversarial Bayes classifiers under uniqueness up to degeneracy

for ϵ < 1/2, Lemma 43 imply it remains to compare the adversarial risks of ∅, R, and

(−∞, b(ϵ)). Theorem 38 implies that none of these sets could be equivalent up to degener-

acy. The risks of these sets compute to Rϵ(∅) = 2/3, Rϵ(R) = 1/3, and Rϵ((−∞, b(ϵ))) =

2
9
(1 + ϵ)2. Therefore, for all ϵ < 1/2, the set (−∞, b(ϵ)) is an adversarial Bayes classifier iff

ϵ ≤
√

3/2− 1 while R is an adversarial Bayes classifier iff ϵ ≥
√

3/2− 1. Theorem 39 then

implies that this last statement holds without the restriction ϵ < 1/2.

Uniqueness up to degeneracy fails for only a single value of ϵ in the example above. In

contrast, uniqueness up to degeneracy fails for all ϵ in the distribution below.

Example 45 (Non-uniqueness for all ϵ > 0). Let p be the uniform density on the interval
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Figure 3.2: (a) The distribution of Example 44. (b) The distribution of Example 45. (c) The distribution
of Example 46.

[−1, 1] and let

η(x) =


1
4

if x ≤ 0

3
4

if x > 0

Calculations for this example are similar to those in Example 44, so we delay the details to

Appendix B.11.4. For this distribution, the set (y,∞) is an adversarial Bayes classifier for any

y ∈ [−ϵ, ϵ] iff ϵ ≤ 1/3 and ∅,R are adversarial Bayes classifiers iff ϵ ≥ 1/3. Theorem 38 implies

that none of these sets could be equivalent up to degeneracy. Therefore, the adversarial

Bayes classifier is not unique up to degeneracy for all ϵ > 0 even though the Bayes classifier

is unique.

Again, the adversarial Bayes classifier (0,∞) is also a Bayes classifier when ϵ ≤ 1/3, and

thus there is no accuracy-robustness tradeoff for this distribution.

A distribution is said to satisfy Massart’s noise condition if |η(x) − 1/2| ≥ δ P-a.e. for

some δ > 0. Prior work [41] relates this condition to the sample complexity of learning from

a function class. For the example above, Theorem 34 implies that Massart’s noise condition

cannot hold for any maximizer of R̄ even though |η − 1/2| ≥ 1/4 P-a.e.

The next example exhibits a degenerate set that has positive measure under P.
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Example 46 (Example of a degenerate set). Consider a distribution on [−1, 1] with

p0(x) =


1
5

if |x| ≤ 1/4

0 otherwise

p1(x) =


3
5

if 1 ≥ |x| > 1/4

0 otherwise

Theorem 37 and Lemma 43 imply that one only need consider ai, bi ∈ {−1
4
± ϵ, 1

4
± ϵ} when

identifying a regular representative of each equivalence class of adversarial Bayes classifiers.

By comparing the adversarial risks of the regular sets satisfying this crieterion, one can show

that when ϵ ≤ 1/8, every adversarial Bayes classifier is equivalent up to degeneracy to the

regular set (−∞,−1/4 + ϵ) ∪ (1/4 − ϵ,∞) but when ϵ ≥ 1/8 then every adversarial Bayes

classifier is equivalent up to degeneracy to the regular set R (see Appendix B.11.5 for details.)

Next consider ϵ ∈ [1/8, 1/4]. If S is an arbitrary subset of [−1/4 + ϵ, 1/4 − ϵ], then

Rϵ(R) = Rϵ(SC). Thus the interval [−1/4 + ϵ, 1/4− ϵ] is a degenerate set.

When ϵ ∈ [1/8, 1/4], the (standard) classification error of R and (−∞,−1/4+ϵ)∪(1/4−ϵ)

differ by 2
5
(1 − 4ϵ), which is close to 1/5 for ϵ near 1/8. Thus a careful selection of the

adversarial Bayes classifier can mitigate the accuracy-robustness tradeoff.

The last three propositions in this section specify conditions under which one could hope

that the boundary of the adversarial Bayes classifier would be within ϵ of the boundary of

the Bayes classifier. If in addition the Bayes and adversarial Bayes classifiers have the same

number of components, one can bound the minimal adversarial Bayes error in terms of the

Bayes error rate and ϵ.

Proposition 47. Let B =
⋃M
i=1(ci, di), A =

⋃M
i=1(ai, bi) be Bayes and adversarial Bayes

classifiers respectively. Assume that p0, p1 are bounded above by K. Then if |ai− ci| ≤ ϵ and

|bi − di| ≤ ϵ, then R(A)−R(B) ≤ 4ϵMK.

Thus there will be a minimal robustness-accuracy tradeoff so long as ϵ≪ 1/MK.
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Proof.

R(A)−R(B) ≤
M∑
i=1

∫ max(ai,ci)

min(ai,ci)

|p1(x)− p0(x)|dx+
∫ max(bi,di)

min(bi,di)

|p1(x)− p0(x)|dx ≤ 4ϵMK

The next proposition stipulates a widely applicable criterion under which there is always

a solution to the necessary conditions p1(a+ ϵ)− p0(a− ϵ) = 0 and p1(b− ϵ)− p0(b+ ϵ) = 0

within ϵ of solutions to p1(x) = p0(x) (which specifies the boundary of the Bayes classifier).

Proposition 48. Let z be a point with p1(z) − p0(z) = 0 and assume that p0 and p1 are

continuous on [z − r, z + r] for some r > 0. Furthermore, assume that one of p0, p1 is non-

increasing and the other is non-decreasing on [z − r, z + r]. Then for all ϵ ≤ r/2 there is a

solution to the first order necessary conditions Equation (3.8a) and Equation (3.8b) within

ϵ of z.

Proof. Without loss of generality, assume that p1 is non-increasing and p0 is non-decreasing

on [z − r, z + r]. The applying the relation p1(z) = p0(z), one can conclude that

p1((z − ϵ) + ϵ)− p0((z − ϵ)− ϵ) = p1(z)− p0(z − 2ϵ) = p0(z)− p0(z − 2ϵ) ≥ 0.

An analogous argument shows that p1((z+ϵ)+ϵ)−p0((z+ϵ)−ϵ) ≤ 0. Thus the intermediate

value theorem implies that there is a solution to Equation (3.8a) within ϵ of z. Analogous

reasoning shows that there is a solution to Equation (3.8b) within ϵ of z.

However, this proposition does not guarantee that the solution to the necessary con-

ditions within ϵ of z must be a boundary point of the adversarial Bayes classifier. To

illustrate the utility of this result, consider a gaussian mixture with p1(x) =
λ√
2πσ

e−
(x−µ1)

2

2σ2 ,

p0(x) =
1−λ√
2πσ

e−
(x−µ0)

2

2σ2 for which p1(µ1) > p0(µ1) and p0(µ0) > p1(µ0), see Figure 3.1c) for an

illustration. Just as in Example 41, the necessary conditions Equation (3.8) reduce to linear
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equations and so there is at most one a(ϵ) solving Equation (3.8a) and at most one b(ϵ)

solving Equation (3.8b). Thus Proposition 48 implies that the solutions to the first order

necessary conditions Equation (3.8) must be within ϵ of the boundary of the Bayes classifier.

Next, if P is the uniform distribution on an interval, an argument similar to the proof of

Proposition 48 implies that solutions to the first order necessary conditions Equation (3.8)

are within ϵ of solutions to p0(z) = p1(z).

Proposition 49. Assume that P is the uniform distribution on an finite interval, p and η are

continuous on suppP, and η(x) = 1/2 only at finitely many points within suppP. Then any

adversarial Bayes classifier is equivalent up to degeneracy to an adversarial Bayes classifier

A =
⋃M
i=m(ai, bi) for which each ai, bi is at most ϵ from some point z satisfying η(z) = 1/2.

The proof is very similar to that of Proposition 48, see Appendix B.11.6 for details.

Finally, under fairly general conditions, when η ∈ {0, 1}, the boundary of the adversarial

Bayes classifier must be within ϵ of the boundary of the Bayes classifier.

Proposition 50. Assume that suppP is an interval P ≪ µ, η ∈ {0, 1}, and p is continuous

on suppP and strictly positive. Then any adversarial Bayes classifier is equivalent up to

degeneracy to a regular adversarial Bayes classifier A =
⋃M
i=m(ai, bi) for which each ai, bi is

at most ϵ from ∂{η = 1}.

Again, the proof is very similar to that of Proposition 48, see Appendix B.11.7 for details.

3.5 Equivalence up to Degeneracy

3.5.1 Equivalence up to Degeneracy as an Equivalence

Relation

When P ≪ µ, there are several useful characterizations of equivalence up to degeneracy.
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Proposition 51. Let P ≪ µ and ϵ > 0. Let (P∗
0,P∗

1) be a maximizer of R̄ and set P∗ =

P∗
0 + P∗

1. Let A1 and A2 be adversarial Bayes classifiers. Then the following are equivalent:

1) The adversarial Bayes classifiers A1 and A2 are equivalent up to degeneracy

2) Either Sϵ(1A1) = Sϵ(1A2)-P0-a.e. or Sϵ(1AC2 ) = Sϵ(1AC1 )-P1-a.e.

3) P∗(A2△A1) = 0

Item 2) states that A1, A2 are equivalent up to degeneracy if the ‘attacked’ classifiers

Aϵ1, A
ϵ
2 are equal P0-a.e. Item 3) further states that the adversarial Bayes classifiers A1,

A2 are unique up to degeneracy if they are equal under the measure of optimal adversarial

attacks.

Proposition 51 is proved in Appendix B.3.2, and we provide an overview of this argument

below. In this proof, we show that Item 3) is equivalent to Item 2), Item 2) implies Item 1),

and Item 1) implies Item 3). First, the complementary slackness conditions of Theorem 30

implies that Item 2) and Item 3) equivalent, (see the proof of Lemma 144 in Appendix B.3).

To show that Item 2) implies Item 1), we prove that Item 2) implies Sϵ(1A1∪A2) = Sϵ(1A1∩A2)

P0-a.e. and Sϵ(1(A1∪A2)C ) = Sϵ(1(A1∩A2)C P1-a.e. (Lemma 142). Consequently, any two sets

between A1 ∩ A2 and A1 ∪ A2 must have the same adversarial risk.

Lastly, to show that Item 1) implies Item 3), we apply the complementary slackness condi-

tion of Equation (3.11) of Theorem 30 to argue that D = A1△A2 has P∗-measure zero. First,

we show that if D1 = intD ∩ Qd, D2 = intD ∩ (Qd)C and ϵ > 0, then Dϵ
1 = Dϵ

2 = (intD)ϵ

(see Lemma 145). Thus
∫
1(A1∩A2∪D1)ϵdP0 =

∫
1(A1∩A2∪D2)ϵdP0 =

∫
1(A1∩A2∪intD)ϵdP0 and

the complementary slackness condition Equation (3.11) implies that P∗
0(intD) = 0. Simi-

larly, one can argue that P∗
1(intD) = 0. The assumption ϵ > 0 is essential for this step of the

proof. Next, to prove P∗(D ∩ ∂D) = 0, we prove the boundary ∂A is always a degenerate

set for an adversarial Bayes classifier A when P ≪ µ and ϵ > 0. Consequently:
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Lemma 52. Let A be an adversarial Bayes classifier. If P ≪ µ and ϵ > 0, then A, A, and

intA are all equivalent up to degeneracy.

See Appendix B.3.1 for a proof. Again, the assumption ϵ > 0 is essential for this step of

the proof.

Proposition 51 has several useful consequences for understanding degenerate sets, which

we explore in Section 3.5.3. Specifically, when P ≪ µ, equivalence up to degeneracy is in

fact an equivalence relation.

Proof of Theorem 33. Item 3) of Proposition 51 states that two adversarial Bayes classifiers

A1, A2 are equivalent up to degeneracy iff 1A1 = 1A2 P∗-a.e. Equality of functions P∗-a.e.

is an equivalence relation and consequently equivalence up to degeneracy is an equivalence

relation.

Furthermore, Proposition 51 implies Theorem 34. Item 2) of Proposition 51 is equivalent

to Item B) of Theorem 34 when the adversarial Bayes classifier is unique up to degeneracy.

In the following discussion, we assume that the adversarial Bayes classifier is unique up to

degeneracy and show that Item 3) of Proposition 51 is equivalent to Item C) of Theorem 34.

First, to show Item C) ⇒ Item 3), notice that the complementary slackness condition in

Equation (3.12) implies that

1η∗>1/2 ≤ 1A ≤ 1η∗≥1/2 P∗-a.e. (3.15)

for any adversarial Bayes classifier A and any maximizer (P∗
0,P∗

1) of R̄. Thus, if P∗(η∗ =

1/2) = 0 then every adversarial Bayes classifier must satisfy 1A = 1η∗>1/2 P∗-a.e. and thus

P∗(A1△A2) = 0 for any two adversarial Bayes classifiers A1 and A2.

It remains to show that Item 3) implies Item C). To relate the quantity P∗(A1△A2) to

η∗, we show that there are adversarial Bayes classifiers Â1, Â2 which match {η∗ > 1/2} and

{η∗ ≥ 1/2} P∗-a.e.
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Lemma 53. There exists P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) which maximize R̄ and adversarial

Bayes classifiers Â1, Â2 for which 1η∗>1/2 = 1Â1
P∗-a.e. and 1η∗≥1/2 = 1Â2

P∗-a.e., where

P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗.

Item B) in conjunction with this lemma implies that 0 = P∗(Â2△Â1) = P∗(η∗ = 1/2) for

the P∗
0, P∗

1 in Lemma 53. See Appendix B.4 for proofs of Theorem 34 and Lemma 53. The

classifiers Â1 and Â2 can be interpreted as minimal and maximal adversarial Bayes clas-

sifiers, in the sense that
∫
Sϵ(1Â1

)dP0 ≤
∫
Sϵ(1A)dP0 ≤

∫
Sϵ(1Â2

)dP0 and
∫
Sϵ(1ÂC1 )dP1 ≥∫

Sϵ(1AC )dP1 ≥
∫
Sϵ(1ÂC2 )dP1 for any adversarial Bayes classifier A (see Lemma 148 in

Appendix B.4.1).

Theorem 33 is false when P is not absolutely continuous with respect to µ:

Example 54. Consider a distribution defined by P0 = 1
2
δ−ϵ and P1 = 1

2
δϵ. If 0 ∈ A then

Sϵ(1A)(ϵ) = 1 and if 0 ̸∈ A then Sϵ(1AC )(−ϵ) = 1. In either case, Rϵ(A) ≥ 1/2. The classifier

A = R achieves adversarial classification error 1/2 and therefore the adversarial Bayes risk

is Rϵ
∗ = 1/2. The sets R≥0 and R>0 also achieve error 1/2 and thus are also adversarial

Bayes classifiers. These two classifiers are equivalent up to degeneracy because they differ

by one point. Furthermore, the classifiers R and R≥0 are equivalent up to degeneracy: if

D ⊂ R<0, then Sϵ(1R≥0∪D)(−ϵ) = 1 while Sϵ(1(R≥0∪D)C )(ϵ) = 0 and hence Rϵ(R≥0∪D) = 1/2.

However, if D ⊂ (−2ϵ, 0) then Rϵ(R>0 ∪D) = 1 and thus R and R>0 cannot be equivalent

up to degeneracy.

In short— the classifiers R>0 and R≥0 are equivalent up to degeneracy, the classifiers R≥0

and R are equivalent up to degeneracy, but R>0 and R are not equivalent up to degeneracy.

Thus equivalence up to degeneracy cannot be an equivalence relation for this distribution.

However, Item 2) and Item 3) of Proposition 51 are still equivalent when P ̸≪ µ, as are

Item B) and Item C) of Theorem 34 (see Lemma 144 and Proposition 149 in Appendices B.3.2

and B.4.2 respectively.). As the proof of Theorem 33 relies only on Item 3), one could use
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Item 2) and Item 3) to define a notion of equivalence for adversarial Bayes classifiers even

when P ̸≪ µ.

3.5.2 The Universal σ-algebra, Measurability, and

Fundamental Regularity Results

We introduce another piece of notation to state our regularity results. Define A−ϵ =

((AC)ϵ)C . The set Aϵ represents all points in Rd that can be moved into A by a pertur-

bation of size at most ϵ and A−ϵ is the set of of points inside A that cannot be perturbed

outside of A:

Aϵ = {x : Bϵ(x) intersects A} (3.16) A−ϵ = {x : Bϵ(x) ⊂ A} (3.17)

See Appendix B.5 for a proof. Prior works [2, 16] note that applying the ϵ, −ϵ operations

in succession can improve the regularity of an adversarial Bayes classifier and reduce the

adversarial Bayes risk. Specifically:

Lemma 55. For any set A, Rϵ((A−ϵ)ϵ) ≤ Rϵ(A) and Rϵ((Aϵ)−ϵ) ≤ Rϵ(A).

See Appendix B.5 for a proof. Thus applying the ϵ and −ϵ operations in succession can

only reduce the adversarial risk of a set. In order to perform these regularizing operations,

one must minimize Rϵ over a σ-algebra Σ that is preserved by the ϵ operation: in other

words, one would wish that A ∈ Σ implies Aϵ ∈ Σ.

To illustrate this concern, [52] demonstrate a Borel set C for which Cϵ is not Borel

measurable. However, prior work shows that if A is Borel, then Aϵ is measurable with

respect to a larger σ-algebra called the universal σ-algebra U (Rd). A set in the universal

σ-algebra is referred to as universally measurable. Theorem 29 of [25] states that

Theorem 56. If A is universally measurable, then Aϵ is as well.

See Appendix B.6 for the definition of the universal σ-algebra U (Rd).
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Thus, in order to guarantee the existence of minimizers to Rϵ with improved regularity

properties, one could minimize Rϵ over the universal σ-algebra U (Rd). However, many prior

papers such as [26, 50, 52] study this minimization problem over the Borel σ-algebra. We

show that these two approaches are equivalent:

Theorem 57. Let B(Rd) denote the Borel σ algebra on Rd. Then

inf
A∈B(Rd)

Rϵ(A) = inf
A∈U (Rd)

Rϵ(A)

See Appendix B.6 for a proof. Due to this result, in the remainder of the paper, we treat

the minimization of Rϵ over U (Rd) and B(Rd) as interchangable.

3.5.3 Describing Degenerate Sets and Proof of Theorem 40

Proposition 51 together with fundamental properties of the ϵ and −ϵ operations imply several

results on degenerate sets.

First, Lemma 27 implies that countable unions and intersections of adversarial Bayes

classifiers are adversarial Bayes classifiers. Item 3) of Proposition 51 then necessitates that

countable unions and intersections preserve equivalence up to degeneracy. As a result:

Lemma 58. Let P ≪ µ. Then a countable union of degenerate sets is degenerate.

See Appendix B.7.1 for a formal proof.

Next, using the regularizing ϵ and −ϵ operations, we study the relation between uniqueness

up to degeneracy and regular adversarial Bayes classifiers. First notice that (A−ϵ)ϵ is smaller

than A while (Aϵ)−ϵ is larger than A:

Lemma 59. Let A be any set. Then (A−ϵ)ϵ ⊂ A ⊂ (Aϵ)−ϵ.

Furthermore, one can compare Sϵ(1A) with Sϵ(1(A−ϵ)ϵ) and Sϵ(1AC ) with Sϵ(1(Aϵ)−ϵ):
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Lemma 60. For any set A ⊂ Rd, the following set relations hold: ((Aϵ)−ϵ)ϵ = Aϵ, ((Aϵ)−ϵ)−ϵ ⊃

A−ϵ, ((A−ϵ)ϵ)−ϵ = A−ϵ, ((A−ϵ)ϵ)ϵ ⊂ Aϵ.

See Appendix B.5 for proofs of Lemma 59 and Lemma 60. Lemma 60 then implies:

Corollary 61. Assume P ≪ µ and let A be an adversarial Bayes classifier. Then A, (Aϵ)−ϵ,

and (A−ϵ)ϵ are all equivalent up to degeneracy.

Proof. Lemma 60 implies that (A−ϵ)ϵ, (Aϵ)−ϵ are both adversarial Bayes classifiers satisfying

Sϵ(1A) = Sϵ(1(Aϵ)−ϵ) and Sϵ(1AC ) = Sϵ(1((A−ϵ)ϵ)C ). Therefore, when P ≪ µ, Item 2) of

Proposition 51 implies that A, (A−ϵ)ϵ), and (Aϵ)−ϵ are all equivalent up to degeneracy.

Theorem 40 is an immediate consequence of Corollary 61. Furthermore, Corollary 61

implies that “small” components of A and AC are degenerate sets. Specifically, one can

show that if C is a component with C−ϵ = ∅, then C is contained in (Aϵ)−ϵ − (A−ϵ)ϵ.

Proposition 62. Let A be an adversarial Bayes classifier and let C be a connected component

of A or AC with C−ϵ = ∅. Then C is contained in (Aϵ)−ϵ − (A−ϵ)ϵ, and thus the set

⋃{
C : connected components of A or AC with C−ϵ = ∅

}
(3.18)

is contained in a degenerate set of A.

See Appendix B.7.2 for a proof. This result has a sort of converse: A degenerate set D

must satisfy 1D−ϵ = 1∅ P-a.e:

Lemma 63. Assume that P ≪ µ and let D be a degenerate set for an adversarial Bayes

classifier A. Then P(D−ϵ) = 0.

See Appendix B.7.3 for a proof.

The adversarial classification risk heavily penalizes the boundary of a classifier. This

observation suggests that if two connected components of a degenerate set are close together,
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then they must actually be included in a larger degenerate set. The ϵ and −ϵ operations

combine to form this enlarging operation.

Lemma 64. Assume that P ≪ µ. If D is a degenerate set for an adversarial Bayes classifier

A, then (Dϵ)−ϵ is as well.

Proof. Let A2 = A∪ (Dϵ)−ϵ. Then Sϵ(1AC ) ≥ Sϵ(1AC2 ). We will show that Sϵ(1A2) = Sϵ(1A)

P0-a.e., which will then imply that A2 is an adversarial Bayes classifier, and furthermore A

and A2 are equivalent up to degeneracy by Proposition 51. Notice that the set A2 satisfies

A ⊂ A2 ⊂ ((A ∪D)ϵ)−ϵ

and then Lemma 60 implies that Aϵ ⊂ (A∪ (Dϵ)−ϵ)ϵ ⊂ (A∪D)ϵ. Because D is a degenerate

set, A3 = A ∪ D is an adversarial Bayes classifier and thus Proposition 51 implies that

1Aϵ = 1(A∪D)ϵ-P0-a.e. which in turn implies 1Aϵ = 1Aϵ2-P0-a.e.

3.6 The Adversarial Bayes Classifier in One

Dimension

In this section, we assume that d = 1 and the length of an interval I will be denoted |I|.

Recall that connected subsets of R are either intervals or single point sets.

3.6.1 Regular adversarial Bayes classifiers—Proof of

Theorem 35 and Theorem 37

Notice that if I is a connected component of A and AC and |I| < 2ϵ, then I−ϵ = ∅. Thus

the set of connected components of A or AC of length strictly less than 2ϵ is contained in a

degenerate set by Proposition 62.
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However, if |I| = 2ϵ, then I−ϵ contains at most one point: if I = [x − ϵ, x + ϵ] then

I−ϵ = {x} while I−ϵ = ∅ if I is not closed. Due to this observation, the set of connected

components of A and AC of length 2ϵ is actually degenerate set as well. Thus one can argue:

Lemma 65. Let P0,P1 ≪ µ, A be an adversarial Bayes classifier. Then there are adversarial

Bayes classifiers Ã1, Ã2 satisfying Ã1 ⊂ A ⊂ Ã2 which are equivalent to A up to degeneracy

and

Ã1 =
M⋃
i=m

(ãi, b̃i), ÃC2 =
M⋃
j=n

(ẽj, f̃j)

where the intervals (ãi, b̃i), (ẽi, f̃i) satisfy b̃i − ãi > 2ϵ and f̃i − ẽi > 2ϵ.

This statement is a consequence of Proposition 62 and Lemma 52.

Proof of Lemma 65. Lemma 52 implies that intA andA are both adversarial Bayes classifiers

equivalent to A, and thus Corollary 61 implies that D1 = ((intA)ϵ)−ϵ − ((intA)−ϵ)ϵ and

D2 = ((A)ϵ)−ϵ − ((A)−ϵ)ϵ are degenerate sets. Thus Lemma 52 and Corollary 61 imply that

Ã1 = intA−D1, Ã2 = A ∪D2, and A are all equivalent up to degeneracy.

The adversarial Bayes classifier intA is an open set, and thus every connected component

of intA is open. Therefore, if I is a connected component of intA of length less than or equal

2ϵ, then I−ϵ = ∅ and Proposition 62 implies that I ⊂ D1. Hence every connected component

of Ã1 has length strictly larger than 2ϵ.

As (A)C is an open set and ÃC2 = (A)C − D2, the same argument implies that every

connected component of ÃC2 has length strictly larger than 2ϵ.

These classifiers Ã1 and Ã2 have “one-sided” regularity— the connected components of

Ã1 and Ã
C
2 have length strictly greater than 2ϵ. Next, we use these classifiers with one-sided

regularity to construct a classifier A′ for which both A′ and (A′)C have components larger

than 2ϵ.
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This result suffices to prove Theorem 35, which is detailed in Appendix B.8, and we

discuss an overview of this proof below. As Ã1 ⊂ Ã2, the sets Ã1 and ÃC2 are disjoint.

Therefore, one can express R as a disjoint union

R = Ã1 ⊔ ÃC2 ⊔D.

Both Ã1 and ÃC2 are a disjoint union of intervals of length greater than 2ϵ, and thus D =

ÃC1 ∩ Ã2 must be a disjoint union of countably many intervals and isolated points. Notice

that because D is degenerate, the union of Ã1 and an arbitrary measurable portion of D is

an adversarial Bayes classifier as well. To construct a regular adversarial Bayes classifier,

we let D1 be the connected components of D that are adjacent to some open interval of

Ã1. The remaining components of D, D2 = D −D1, must be adjacent to Ã2. Therefore, if

A′ = Ã1 ∪D1 the connected components of A′ = Ã1 ∪D1 and (A′)C = Ã2 ∪D2 must have

length strictly greater than 2ϵ.

Next, Theorem 37 is a consequence of the fact that the adversarial risk of A =
⋃M
i=m(ai, bi)

equals (3.7) when A is regular.

Proof of Theorem 37. Because bi − ai > 2ϵ and ai − bi−1 > 2ϵ, we can treat Rϵ(A) as a

differentiable function of ai on a small open interval around ai as described by Equation (3.7).

The first order necessary conditions for a minimizer then imply the first relation of (3.8) and

the second order necessary conditions for a minimizer then imply the first relation of (3.13).

The argument for bi is analogous.

3.6.2 Degenerate Sets in One Dimension—Proof of

Theorem 38

First, every component of A or AC with length less than equal to 2ϵ must be degenerate. In

comparison, notice that this statement is strictly stronger than Proposition 62.
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Lemma 66. If a connected component C of A or AC has length less than or equal to 2ϵ,

then C is degenerate.

Proof of Lemma 66. Let A be an adversarial Bayes classifier and let Ã1 and Ã2 be the two

equivalent adversarial Bayes classifiers of Lemma 65. Because every connected component

of component of Ã1 has length strictly larger than 2ϵ, the connected components of A of

length less than or equal to 2ϵ must be included in the degenerate set A − Ã1. Similarly,

the connected components of AC of length less than or equal to 2ϵ are included in ÃC2 −AC ,

which is a degenerate set.

Conversely, the length of a degenerate interval contained in suppP is at most 2ϵ.

Corollary 67. Let P ≪ µ. Assume that I ⊂ suppP is a degenerate interval for an adver-

sarial Bayes classifier A. Then |I| ≤ 2ϵ.

Proof. Lemma 63 implies that if I is a degenerate interval then P(I−ϵ) = 0. Because I is

an interval, the set I−ϵ is either empty, a single point, or an interval. As I ⊂ suppP and

every interval larger than a single point has positive measure under µ, it follows that I−ϵ is

at most a single point and thus |I| ≤ 2ϵ.

This result is then sufficient to prove the fourth bullet of Theorem 38. To start:

Lemma 68. Let P ≪ µ and let A be an adversarial Bayes classifier. If suppP is an interval

and the adversarial Bayes classifier A has a degenerate interval I contained in suppPϵ, then

η(x) ∈ {0, 1} on a set of positive measure.

A formal proof is provided in Appendix B.9.1, we sketch the main ideas below. Let I be a

degenerate interval in suppP. One can then find a ‘maximal’ degenerate interval J = [d3, d4]

containing I inside suppP, in the sense that if J ′ is a degenerate interval and J ⊂ J ′ then

J ′ = J . Corollary 67 implies that |J | ≤ 2ϵ and Lemma 64 implies that J is of distance strictly

more than 2ϵ from any other degenerate set. Thus the intervals [d3 − ϵ, d3), (d4, d4 + ϵ] do
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Figure 3.3: The distribution of Example 69.

not intersect a degenerate subset of A, and these intervals must be entirely contained in A

or AC due to Lemma 66. Thus one can compute the difference Rϵ(A∪J)−Rϵ(A−J) under

four cases: 1) [d3 − ϵ, d3) ⊂ A, (d4, d4 + ϵ] ⊂ A; 2) [d3 − ϵ, d3) ⊂ A, (d4, d4 + ϵ] ⊂ AC ; 3)

[d3 − ϵ, d3) ⊂ AC , (d4, d4 + ϵ] ⊂ A; 4) [d3 − ϵ, d3) ⊂ AC , (d4, d4 + ϵ] ⊂ AC .

In each case, this difference results in
∫
I′
p1(x)dx = 0 or

∫
I′
p0(x)dx = 0 on some interval

I ′ ⊂ suppP, which implies either η = 1 or η = 0, respectively, on a set of positive measure.

Lemma 68 and Lemma 64 together imply the fourth bullet of Theorem 38. The argument

is outlined below, with a formal proof in Appendix B.9.2. If D ⊂ int suppPϵ is a degenerate

set which contains two points x ≤ y at most 2ϵ apart, then Lemma 64 implies that [x, y] ⊂

(Dϵ)−ϵ is degenerate, which would contradict Lemma 68. Thus D ∩ int suppPϵ must be

comprised of points that are strictly more than 2ϵ apart. However, if x ∈ D is more than

2ϵ from any point in ∂A, then one can argue that Rϵ(A − {x}) − Rϵ(A) > 0 if x ∈ A and

Rϵ(A∪ {x})−Rϵ(A) > 0 if x ̸∈ A. Thus if D is a degenerate set is disjoint from (suppPϵ)C ,

then D must be contained in ∂A.

Combining previous results then proves Theorem 38— The first bullet of Theorem 38 is

Lemma 66, the second bullet is Corollary 67, the third bullet is Lemma 58, and the fourth

bullet is shown in Appendix B.9.2.

Lemma 68 and the fourth bullet of Theorem 38 are false when suppP is not an interval.
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Example 69. Consider a probability distribution for which

p1(x) =



8
25ϵ

if − 5
2
ϵ ≤ x ≤ −3

2
ϵ

1
25ϵ

if − 1
2
ϵ ≤ x ≤ +1

2
ϵ

2
25ϵ

if + 3
2
ϵ ≤ x ≤ +5

2
ϵ

0 otherwise

p0(x) =



2
25ϵ

if − 5
2
ϵ ≤ x ≤ −3

2
ϵ

4
25ϵ

if − 1
2
ϵ ≤ x ≤ +1

2
ϵ

8
25ϵ

if + 3
2
ϵ ≤ x ≤ +5

2
ϵ

0 otherwise

See Figure 3.3 for an illustration. Then there are no solutions x to the necessary con-

ditions Equation (3.8) within suppPϵ at which p0 is continuous at x ± ϵ and p1 con-

tinuous at x ∓ ϵ. Thus the only possible values for the ais and bis within suppPϵ are

{−7
2
,−5

2
ϵ,−3

2
ϵ,−1

2
ϵ,+1

2
ϵ,+3

2
ϵ,+5

2
ϵ,+7

2
ϵ}. By comparing the risks of all adversarial Bayes

classifiers with endpoints in this set, one can show that (−∞,−1
2
ϵ) is an adversarial Bayes

classifier. At the same time, Rϵ((−∞,−1
2
ϵ) ∪ S) = Rϵ((−∞,−1

2
ϵ)) for any subset S of

[−1
2
ϵ,+1

2
ϵ]. Thus [−1

2
ϵ,+1

2
ϵ] is a degenerate set, but η(x) = 1

5
on [−1

2
ϵ,+1

2
ϵ]. See Ap-

pendix B.11.8 for details.

3.6.3 Regularity as ϵ Increases—Proof of Theorem 39

Let A1 and A2 be two regular adversarial Bayes classifiers corresponding to perturbation

radiuses ϵ1 and ϵ2 respectively. Notice that the adversarial classification risk in Equation (3.5)

pays a penalty of 1 within ϵ of each ai and bi. This consideration suggests that as ϵ increases,

there should be fewer transitions between the two classes in the adversarial Bayes classifier.

The key observation is that so long as A1 is non-trivial, no connected component of A2 should

contain a connected component of AC1 and no connected component of AC2 should contain a

connected component of A1.

We adopt additional notation to formally state this principle. When
⋃M
i=m(ai, bi) is a

regular adversarial Bayes classifier and M is finite, define aM+1 to be +∞. Similarly, if m is
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finite, define bm−1 as −∞.

Lemma 70. Assume that P ≪ µ is a measure for which suppP is an interval I and P(η(x) =

0 or 1) = 0. Let A1 =
⋃M
i=m(a

1
i , b

1
i ) and A2 =

⋃N
j=n(a

2
j , b

2
j) be two regular adversarial Bayes

classifiers corresponding to perturbation sizes ϵ1 < ϵ2.

• If both R and ∅ are adversarial Bayes classifiers for perturbation radius ϵ1, then both

R and ∅ are adversarial Bayes classifiers for perturbation radius ϵ2.

• Assume that R and ∅ are not both adversarial Bayes classifiers for perturbation radius

ϵ1. Then for each interval (a1i , b
1
i ), the set (a1i , b

1
i ) ∩ Iϵ1 cannot contain any non-empty

(b2j , a
2
j+1) ∩ Iϵ1 and for each interval (b1i , a

1
i+1), the set (b1i , a

1
i+1) ∩ Iϵ1 cannot contain

any non-empty (a2j , b
2
j) ∩ Iϵ1.

Example 41 demonstrates the the exception to the second bullet— when ϵ ≥ (µ1−µ0)/2,

both R and ∅ are adversarial Bayes classifiers.

To show Lemma 70, notice that if A2 =
⋃M
i=1(a

2
i , b

2
i ) is a regular adversarial Bayes classifier

and (a2j , b
2
j) ⊂ I−ϵ2 , then Rϵ2(A2 − (a2j , b

2
j)) ≥ Rϵ2(A2) which is equivalent to

0 ≤
∫ b2j+ϵ2

a2j−ϵ2
p1dx−

(∫ a2j+ϵ2

a2j−ϵ2
pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ b2j+ϵ2

b2j−ϵ2
pdx

)

=

∫ b2j−ϵ2

a2j+ϵ2

p1(x)dx−
∫ b2j+ϵ2

a2j−ϵ2
p0(x)dx

As p0, p1 are non-zero on suppP, replacing ϵ2 with ϵ1 in this last expression would increase

the first integral and decrease the second, thereby increasing the entire expression.

Thus, if (a2j − ϵ1, b
2
j + ϵ1) ⊂ AC1 , this calculation would imply that Rϵ1(A1 ∪ (a2i , b

2
i )) <

Rϵ1(A1), which would contradict the fact that A1 is an adversarial Bayes classifier. Similar

but more technical calculations performed in Appendix B.10 show that if (a2i , b
2
i ) ⊂ AC1 ∩ Iϵ1

then Rϵ1(A1 ∪ (a2i , b
2
i )) < Rϵ1(A1) and so A1 cannot be an adversarial Bayes classifier.
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3.7 Related Works

Prior work analyzes several variations of our setup, such as perturbations in open balls

[16], alternative perturbation sets [11], attacks using general Wasserstein p-metrics [63, 64],

minimizingRϵ over Lebesgue measurable sets [52], the multiclass setting [63], and randomized

classifiers [28, 63]. Due to the plethora of attacks present in the literature, this paper

contains proofs of all intermediate results that appear in prior work (such as Lemma 27 from

[16]). Understanding the uniqueness of the adversarial Bayes classifier in these contexts

remains an open question. Establishing a notion of uniqueness for randomized classifiers

in the adversarial context is particularly interesting, as randomized classifiers are essential

in calculating the minimal possible error in adversarial multiclass classification [63] but not

binary classification [28].

Prior work [1, 11, 50] adopts a different method for identifying adversarial Bayes classifiers

for various distributions. To prove a set is an adversarial Bayes classifier, [11] first show a

strong duality result infAR
ϵ(A) = supγ D̃(γ) for some dual risk D̃ on the set of couplings

between two measures. Subsequently, [1, 11, 50] exhibit a set A and a coupling γ for

which the adversarial risk of A matches the dual risk of γ, and thus A must minimize

the adversarial classification risk. This approach involves solving the first order necessary

conditions Equation (3.8), and [1] relies on a result of [64] which states that these relations

hold for sufficiently small ϵ under reasonable assumptions. In contrast, this paper uses

equivalence up to degeneracy to show that it suffices to consider sets with enough regularity

for the first order necessary conditions to hold; and the solutions to these conditions typically

reduce the possibilities for the adversarial Bayes classifier to a finite number of sets.

Prior work on regularity [2, 16] prove the existence of adversarial Bayes classifiers with

one sided tangent balls. Theorem 40 states that each equivalence class under equivalence up

to degeneracy has a representative with this type of regularity. Furthermore, results of [1]
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imply that under reasonable assumptions, one can choose adversarial Bayes classifiers A(ϵ)

for which comp(A(ϵ)) + comp(A(ϵ)C) is always decreasing in ϵ. Specifically, they show that

for increasing ϵ, the only possible discontinuous changes in A(ϵ) are merged components,

deleted components, or a endpoint of a component changing discontinuously in ϵ. This

statement does not imply Lemma 70, and Lemma 70 does not imply this result of [1].

3.8 Conclusion

We defined a new notion of uniqueness for the adversarial Bayes classifier, which we call

uniqueness up to degeneracy. This concept generalizes uniqueness for the Bayes classifier.

The concept of uniqueness up to degeneracy produces a method for calculating the adversarial

Bayes classifier for a reasonable family of distributions in one dimension, and assists in

understanding their regularity properties. We hope that the theoretical insights in this

paper will assist in the development of algorithms for robust learning.
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4 — Adversarial Consistency

4.1 Introduction

A central issue in the study of neural nets is their susceptibility to adversarial perturbations—

perturbations imperceptible to the human eye can cause a neural net to misclassify an image

[14, 58]. The same phenomenon appears in other types of data such as speech and text.

As deep nets are used in applications such as self-driving cars and medical imaging [37,

47], training classifiers robust to adversarial perturbations is a central question in machine

learning.

The foundational theory of surrogates for classication in well understood. In the stan-

dard classification setting, one seeks to minimize the classification risk— the proportion of

incorrectly classified data. Since minimizing the classification risk is typically computation-

ally intractable [9], a common approach is to instead minimize a better-behaved alternative

called the surrogate risk. However, one must verify that classifiers with low surrogate risk

also achieve low classification risk. If for every data distribution, a sequence of functions

minimizing the surrogate also minimizes the classification risk, the surrogate risk is called

consistent. Many classic papers study the consistency of surrogate risks in the standard

classification setting [8, 38, 43, 49, 57].

Unlike the standard case, however, little is known about the consistency of surrogate

risks in the context of adversarial training, which involves risks that compute the supremum
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of a surrogate loss function over an ϵ-ball. Though this question has been partially studied

in the literature [3, 4, 42], a general theory is lacking. Existing results reveal, however, that

the situation is substantially different from the standard case: for instance, [42] show that

no convex surrogate can be adversarially consistent. To our knowledge, no adversarially

consistent risks are known.

In this work, we give a complete characterization of adversarial consistency for surrogate

losses.

Our Contributions:

• In Section 4.4 we give a surprisingly simple necessary and sufficient condition for ad-

versarial consistency:

Informal Theorem. Under reasonable assumptions on the surrogate loss ϕ, the supremum-

based ϕ-risk is adversarially consistent if and only if infα ϕ(α)/2 + ϕ(−α)/2 < ϕ(0).

In particular, this result proves consistency for any loss function that is not midpoint

convex at the origin.

• In Section 4.5, we specialize to the case of the ρ-margin loss, where we obtain a quan-

titative proof of adversarial consistency by explicitly bounding the excess adversarial

risk.

To the best of the authors’ knowledge, this paper is the first to prove that a loss-based

learning procedure is consistent for a wide range of distributions in the adversarial setting. As

mentioned above, the ρ-margin loss ϕρ(α) = min(1,max(1− α/ρ, 0)) satisfies the conditions

of Informal Theorem above, as does the shifted sigmoid loss ϕτ (α) = 1/(1 + exp(α − τ))

with τ > 0, which confirms a conjecture of Meunier et al. [42]. By contrast, all convex losses

satisfy infα ϕ(α)/2 + ϕ(−α)/2 = ϕ(0), and are therefore not adversarially consistent.

In addition to consistency, one would hope to obtain a quantitative comparison between

the adversarial surrogate risk and the adversarial classification risk. Our bound in Section 4.5
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shows that the excess error of the adversarial ρ-margin loss is a linear upper bound on the

adversarial classification error, which implies that minimizing the adversarial ρ-margin loss

is an effective procedure for minimizing the adversarial classification error. Extending the

bound in Section 4.5 to further losses remains an open question.

4.2 Related Works

Many previous works have studied the consistency of surrogate risks [8, 38, 43, 49, 57]. The

classic papers by [8, 38, 75] explore the consistency of surrogate risks over all measurable

functions. The works [5, 43, 49] study H-consistency, which is consistency restricted to a

smaller set of functions. Steinwart [57] generalizes some of these results into a framework

referred to as calibration. Awasthi et al. [3, 4], Bao, Scott, and Sugiyama [6], and Meu-

nier et al. [42] then use this framework to analyze the calibration of adversarial surrogate

losses. Furthermore Meunier et al. [42] relate calibration to consistency for adversarial losses

in certain cases — they show that no convex loss is adversarially consistent. They also

conjecture that a class of surrogate losses called the odd shifted losses are adversarially con-

sistent. Meunier et al. [42] also show that in a restricted setting, surrogates are consistent

for ‘optimal attacks’. The proof of our result formalizes this intuition. Simultaneous work

[40] shows that the ρ-margin loss is adversarially H-consistent for typical function classes.

Lastly, Bhattacharjee and Chaudhuri [12, 13] use a different set of techniques to study the

consistency of non-parametric methods in adversarial scenarios.

Our results rely on recent works establishing the properties of minimizers to surrogate

adversarial risks. [2, 16, 52] all proved the existence of minimizers to the adversarial risk

and [52] proved a minimax theorem for the zero-one loss. Building on the work of [52], [25]

later proved similar existence and minimax statements for arbitrary surrogate losses. Trillos,

Jacobs, and Kim [62, 63] extend some of these results to the multiclass case. Lastly, [64]
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study further properties of the minimizers to the adversarial classification loss.

4.3 Problem Setup

This section contains the necessary background for our results. Section 4.3.1 gives precise

definitions for the main concepts, and Section 4.3.2 describes the minimax theorems that are

at the heart of our proof.

4.3.1 Surrogate Risks

This paper studies binary classification on Rd. Explicitly, labels are {−1,+1} and the data

is distributed according to a distribution D on the set Rd × {−1,+1}. The measures P1,

P0 define the relative probabilities of finding points with a given label in a region of Rd.

Formally, define measures on Rd by

P1(A) = D(A× {+1}),P0(A) = D(A× {−1}).

The classification risk R(f) is then the probability of misclassifying a point under D:

R(f) =

∫
1f(x)≤0dP1 +

∫
1f(x)>0dP0. (4.1)

The surrogate to R is

Rϕ(f) =

∫
ϕ(f)dP1 +

∫
ϕ(−f)dP0 . (4.2)

A classifier can be obtained by minimizing either R or Rϕ over the set of all measurable

functions. A point x is then classified according to sign f . There are many possible choices

for ϕ—typically one chooses a loss that is easy to optimize. In this paper, we assume that
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Assumption 2. ϕ is non-increasing, non-negative, continuous, and limα→∞ ϕ(α) = 0.

Most surrogate losses in machine learning satisfy this assumption. Learning algorithms

typically optimize the risk in (4.2) using an iterative procedure, which produces a sequence

of functions that minimizes Rϕ. We call Rϕ a consistent risk and ϕ a consistent loss if

for all distributions, every minimizing sequence of Rϕ is also a minimizing sequence of R.1

Alternatively, the risks R, Rϕ can be expressed in terms of the quantities P = P0 + P1 and

η = dP1/dP. For all η ∈ [0, 1], define

C(η, α) = η1α≤0 + (1− η)1α>0, C∗(η) = inf
α
C(η, α), (4.3)

Cϕ(η, α) = ηϕ(α) + (1− η)ϕ(−α), C∗
ϕ(η) = inf

α
Cϕ(η, α) (4.4)

For more on the definitions of R,Rϕ, C, Cϕ, see [8] or Sections 3.1 and 3.2 of [25]. Using

these definitions, R(f) =
∫
C(η(x), f(x))dP and

Rϕ(f) =

∫
Cϕ(η(x), f(x))dP (4.5)

This alternative view of the risksR andRϕ provides a ‘pointwise’ criterion for consistency—

if the function f(x) minimizes Cϕ(η(x), ·) at each point, then it also minimizes Rϕ. However,

minimizers to Cϕ(η, ·) over R do not always exist— consider for instance η = 1 for the ex-

ponential loss ϕ(α) = e−α. In general, for minimizers of Cϕ(η, ·) to exist, one must work

over the extended real numbers R = R ∪ {−∞,+∞}. The following proposition proved in

Appendix C.1 implies that ‘pointwise’ considerations also extends to minimizing sequences

of functions.

Proposition 71. The following are equivalent:

1In the context of standard (non-adversarial) learning, the concept we defined as consistency is often
referred to as calibration, see for instance [8, 57]. We opt for the term ‘consistency’ as the prior works [3, 4,
42] use calibration to refer to a different but related concept in the adversarial setting.
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1) ϕ is consistent

2) Every minimizing sequence of Cϕ(η, ·) is also a minimizing sequence of C(η, ·)

3) Every R-valued minimizer of Rϕ is a minimizer of R

This result is well-known in prior literature; in particular the equivalence between 2)

and 3) is closely related to the equivalence between calibration and consistency in the non-

adversarial setting [57]. Most importantly, the equivalence between 1) and 3) reduces study-

ing minimizing sequences of functionals to studying minimizers of functions. We will show

that the equivalence between 1) and 2) has an analog in the adversarial scenario, but the

equivalence between 1) and 3) does not.

In the adversarial classification setting, every x-value is perturbed by a malicious adver-

sary before undergoing classification by f . We assume that these perturbations are bounded

by ϵ in some norm ∥ · ∥ and furthermore, the adversary knows both our classifier f and

the true label of the point x. In other words, f misclassifies (x, y) when there is a point

x′ ∈ Bϵ(x) for which 1f(x′)≤0 = 1 for y = +1 and 1f(x′)>0 = 1 for y = −1. Conveniently, this

criterion can be expressed in terms of suprema. For any function g, we define

Sϵ(g)(x) = sup
∥h∥≤ϵ

g(x+ h)

A point x with label +1 is misclassified when Sϵ(1f≤0)(x) = 1 and a point x with label

−1 is misclassified when Sϵ(1f>0)(x) = 1. Hence the expected fraction of errors under the

adversarial attack is

Rϵ(f) =

∫
Sϵ(1f≤0)dP1 +

∫
Sϵ(1f>0)dP0, (4.6)

which is called the adversarial classification risk 2. Again, optimizing the empirical version

2Defining this integral requires some care because for a Borel function g, Sϵ(g) may not be measurable;
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of (4.6) is computationally intractable so instead one minimizes a surrogate of the form

Rϵ
ϕ(f) =

∫
Sϵ(ϕ ◦ f)dP1 +

∫
Sϵ(ϕ ◦ −f)dP0 (4.7)

Due to the supremum in this expression, we refer to such a risk as a supremum-based surro-

gate. We define adversarial consistency as

Definition 72. The risk Rϵ
ϕ is adversarially consistent if for every data distribution, every

sequence fn which minimizes Rϵ
ϕ over all Borel measurable functions also minimizes Rϵ. We

say that the loss ϕ is adversarially consistent if the risk Rϵ
ϕ is adversarially consistent.

Many convex and non-convex losses are consistent in standard classification [8, 38, 53, 57,

75]. By contrast, adversarial consistency often fails. For instance, Meunier et al. [42] show

that convex losses are not adversarially consistent. Furthermore, their example shows that

the equivalence between 1) and 3) in Proposition 71 does not hold in the adversarial context.

Thus, to understand adversarial consistency, it does not suffice to compare minimizers of Rϵ
ϕ

and Rϵ. To illustrate this distinction, we show the following result, adapted from [42].

Proposition 73. Assume that infα ϕ(α)/2 + ϕ(−α)/2 = ϕ(0). Then ϕ is not adversarially

consistent.

Proof. Let P0 = P1 be the the uniform distribution on the ballBR(0) and let ϵ = 2R. Let ϕ be

a loss function for which infα ϕ(α)/2+ϕ(−α)/2 = C∗
ϕ(1/2) = ϕ(0). Notice that inff R

ϵ(f) ≥

inff R(f) and inff R
ϵ
ϕ(f) ≥ inff Rϕ(f). Since P0 = P1, the optimal non-adversarial risk is

inff R(f) = 1/2. Moreover, as C∗
ϕ(1/2) = ϕ(0), the optimal non-adversarial surrogate risk

is inff Rϕ(f) = C∗
ϕ(1/2) = ϕ(0). Thus, for the function f ∗ ≡ 0, Rϵ(f ∗) = inff R(f) = 1/2

and Rϵ
ϕ(f

∗) = inff Rϕ(f) = ϕ(0). Therefore f ∗ minimizes both Rϵ
ϕ and Rϵ. Now consider

see Section 3.3 and Appendix A of [25] for details.
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the sequence of functions

fn(x) =


1
n

x = 0

− 1
n

x ̸= 0

Because ϵ = 2R, every point in the support of the distribution can be perturbed to every

other point. Thus Sϵ(ϕ ◦ fn)(x) = ϕ(−1/n) and Sϵ(ϕ ◦ −fn)(x) = ϕ(−1/n). However,

Sϵ(1f≤0) = 1 and Sϵ(1f>0) = 1. Therefore, Rϵ
ϕ(fn) = ϕ(−1/n) while Rϵ(fn) = 1 for all n.

As ϕ is continuous, limn→∞Rϵ
ϕ(fn) = ϕ(0). Thus fn is a minimizing sequence of Rϵ

ϕ but not

of Rϵ, so ϕ is not adversarially consistent.

This example shows that if C∗
ϕ(1/2) = ϕ(0), then ϕ is not adversarially consistent. The

main result of this paper is that this is the only obstruction to adversarial consistency: ϕ is

adversarially consistent if and only if C∗
ϕ(1/2) < ϕ(0).

We begin by showing that this condition suffices for consistency in the non-adversarial

setting. Surprisingly, despite the wealth of work on this topic, this condition does not appear

to be known.

Proposition 74. If C∗
ϕ(1/2) < ϕ(0), then ϕ is consistent.

See Appendix C.3 for a proof.

Again, some losses that satisfy this property are the ρ-margin loss ϕρ(α) = min(1,max(1−

α/ρ, 0)) and the the shifted sigmoid loss proposed by Meunier et al. [42], ϕ(α) = 1/(1 +

exp(α − τ)), τ > 0. (In fact, one can show that the class of shifted odd losses proposed by

Meunier et al. [42] satisfy C∗
ϕ(1/2) < ϕ(0).)

Notice that all convex losses satisfy C∗
ϕ(1/2) = ϕ(0):

C∗
ϕ(1/2) = inf

α

1

2
ϕ(α) +

1

2
ϕ(−α) ≥ ϕ(0)

The opposite inequality follows from the observation that C∗
ϕ(1/2) ≤ Cϕ(1/2, 0) = ϕ(0). In
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contrast, recall that a convex loss ϕ with ϕ′(0) < 0 is consistent [8].

As conjectured by prior work [6, 42], the fundamental reason losses with C∗
ϕ(1/2) < ϕ(0)

are adversarially consistent is that minimizers of Cϕ(η, ·) are uniformly bounded away from

0 for all η:

Lemma 75. The loss ϕ satisfies C∗
ϕ(1/2) < ϕ(0) iff there is an a > 0 for which any minimizer

α∗ of Cϕ(η, ·) satisfies |α| ≥ a.

See C.3 for a proof. Concretely, one can show that for the ρ-margin loss ϕρ, a minimizer

α∗ of Cϕρ(η, ·) must satisfy |α∗| ≥ ρ. Similarly, a minimizer α∗ of Cϕτ (η, ·) of the shifted

sigmoid loss ϕτ = 1/(1 + exp(α− τ)), τ > 0 is always either −∞ or +∞. In 4.4, we use this

property to show that minimizing sequences of Rϵ
ϕ must be uniformly bounded away from

zero, thus ruling out the counterexample presented in Proposition 73.

4.3.2 Minimax Theorems for Adversarial Risks

We study the consistency of ϕ by by comparing minimizing sequences of Rϵ
ϕ with those of

Rϵ. In the next section, in order to compare these minimizing sequences, we will attempt

to re-write the adversarial loss in a ‘pointwise’ manner similar to Proposition 71. In order

to achieve this representation of the adversarial loss, we apply minimax and complementary

slackness theorems from [25, 52].

Before presenting these results, we introduce the ∞-Wasserstein metric from optimal

transport. For two finite probability measures Q,Q′ satisfying Q(Rd) = Q′(Rd), let Π(Q,Q′)

be the set of couplings between Q and Q′:

Π(Q,Q′) = {γ : measure on Rd × Rd with γ(A× Rd) = Q(A), γ(Rd × A) = Q′(A)}
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The distance between Q′ and Q in the Wasserstein ∞-metric W∞ is defined as

W∞(Q,Q′) = inf
γ∈Π(Q,Q′)

ess sup
(x,y)∼γ

∥x− y∥.

TheW∞ distance is in fact a metric on the space of measures. We denote the ∞-Wasserstein

ball around a measure Q by

B∞
ϵ (Q) = {Q′ : Q′ Borel, W∞(Q,Q′) ≤ ϵ}

Informally, the measure Q′ is in B∞
ϵ (Q) if perturbing points by at most ϵ under the measure

Q can produce Q′. As a result, Wasserstein ∞-balls are fairly useful for modeling adversarial

attacks. Specifically, one can show:

Lemma 76. For any function g and measures Q′, Q with W∞(Q′,Q) ≤ ϵ, the inequality∫
Sϵ(g)dQ ≥

∫
gdQ′ holds.

See Appendix C.4 for a proof.

Minimax theorems from prior work use this framework to introduce dual problems to the

adversarial classification risks (4.6) and (4.7). Let P′
0,P′

1 be finite Borel measures and define

R̄(P′
0,P′

1) =

∫
C∗
(

dP′
1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1) (4.8)

where C∗ is defined by (4.3). The next theorem states that maximizing R̄ over W∞ balls is

in fact a dual problem to minimizing Rϵ.

Theorem 77. Let R̄ be defined by (4.8).

inf
f Borel
R-valued

Rϵ(f) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) (4.9)
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and furthermore equality is attained for some Borel measurable f̂ and P̂1, P̂0 withW∞(P̂0,P0) ≤

ϵ and W∞(P̂1,P1) ≤ ϵ.

The first to show such a theorem was Pydi and Jog [52]. In comparison to their Theorem

8, Theorem 77 removes the assumption that P0,P1 are absolutely continuous with respect to

Lebesgue measure and shows that the minimizer f̂ is in fact Borel. We prove this theorem

in Appendix C.5. Frank and Niles-Weed [25] prove a similar statement for the surrogate risk

Rϵ
ϕ. This time, the dual objective is

R̄ϕ(P′
0,P′

1) =

∫
C∗
ϕ

(
dP′

1

d(P′
0 + P′

1)

)
d(P′

0 + P′
1) (4.10)

with C∗
ϕ defined by (4.4).

Theorem 78. Assume that Assumption 2 holds, and define R̄ϕ by (4.10). Then

inf
f Borel,
f R-valued

Rϵ
ϕ(f) = sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1) (4.11)

and furthermore equality in the dual problem is attained for some P∗
1,P∗

0 with W∞(P∗
0,P0) ≤ ϵ

and W∞(P∗
1,P1) ≤ ϵ.

Frank and Niles-Weed [25] proved this statement in Theorem 6 but with the infimum

taken over R-valued functions. To extend the result to R-valued functions as in Theorem 78,

we show that inff Borel,f R-valuedR
ϵ
ϕ(f) = inff Borel,f R-valuedR

ϵ
ϕ(f) in Appendix C.2.

4.4 Adversarially Consistent Losses

This section contains our main results on adversarial consistency. In light of Proposition 73,

our main task is to show that a loss satisfying C∗
ϕ(1/2) < ϕ(0) is adversarially consistent.
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At a high level, we will show that every minimizing sequence of Rϵ
ϕ must also minimize

Rϵ. However, directly analyzing minimizing sequences {fn} of Rϵ
ϕ and Rϵ is challenging

due to the supremums in the definitions of the adversarial risks. We therefore develop alter-

nate characterizations of minimizing sequences to both functionals, based on complementary

slackness conditions derived from the convex duality results of Section 3.2. However, unlike

standard complementary slackness conditions well known from convex optimization, these

theorems allow us to characterize minimizing sequences as well as minimizers.

4.4.1 Approximate Complementary Slackness

We first state this slackness result for the surrogate case, due to Frank and Niles-Weed [25,

Lemmas 16 and 26] and Theorem 78.

Proposition 79. Let (P∗
0,P∗

1) be any maximizers of R̄ϕ over B∞
ϵ (Pi). Define P∗ = P∗

0 + P∗
1,

η∗ = dP∗
1/dP∗. If fn is a minimizing sequence for Rϵ

ϕ, then the following hold:

lim
n→∞

∫
Cϕ(η

∗, fn)dP∗ =

∫
C∗
ϕ(η

∗)dP∗. (4.12)

lim
n→∞

∫
Sϵ(ϕ◦fn)dP1−

∫
ϕ◦fndP∗

1 = 0, lim
n→∞

∫
Sϵ(ϕ◦−fn)dP0−

∫
ϕ◦−fndP∗

0 = 0 (4.13)

Proof. Let Rϵ
ϕ,∗ be the minimal value of Rϵ

ϕ and choose a δ > 0. Then for sufficiently large

N , n ≥ N implies that Rϵ
ϕ(fn) ≤ Rϵ

ϕ,∗ + δ. Lemma 76 and the definition of C∗
ϕ in (4.4)

further imply that

Rϵ
ϕ,∗+δ ≥

∫
Sϵ(ϕ◦fn)dP1+

∫
Sϵ(ϕ◦−fn)dP0 ≥

∫
ϕ◦fndP∗

1+

∫
ϕ◦−fndP∗

0 ≥ Rϵ
ϕ,∗ (4.14)

As Rϵ
ϕ,∗ =

∫
C∗
ϕ(η

∗)dP∗, this relation immediately implies (4.12).
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Next, Lemma 76 again implies that

∫
Sϵ(ϕ ◦ fn)dP1 ≥

∫
ϕ ◦ fndP∗

1 and

∫
Sϵ(ϕ ◦ −fn)dP0 ≥

∫
ϕ ◦ −fndP∗

0 (4.15)

while (4.14) implies that

Rϵ
ϕ,∗ −

∫
ϕ ◦ fndP∗

1 +

∫
ϕ ◦ −fndP∗

0 ≤ 0.

Therefore, subtracting
∫
ϕ ◦ fndP∗

1 +
∫
ϕ ◦ −fndP∗

0 from (4.14) results in

δ ≥
(∫

Sϵ(ϕ ◦ fn)dP1 −
∫
ϕ ◦ fndP∗

1

)
+

(∫
Sϵ(ϕ ◦ −fn)dP0 −

∫
ϕ ◦ −fndP∗

0

)
≥ 0. (4.16)

Again, (4.15) implies that the quantities on parentheses are both positive which implies

(4.13).

Proposition 79 shows that minimizing sequences of Rϵ
ϕ satisfy two properties: 1) The

sequence {fn} must minimize the standard ϕ-risk Rϕ with measures P∗
0, P∗

1 in place of P0,P1,

2) At the limit, the measures P∗
0,P∗

1 are best adversarial attacks on ϕ◦fn, ϕ◦−fn. In fact, one

can show that {fn} is a minimizing sequence of Rϵ
ϕ if and only if it satisfies these properties.

Crucially, a very similar characterization holds for minimizers of the adversarial classification

loss. We state and prove the ‘only if’ direction of this characterization in Proposition 80.

Proposition 80. Let fn be a sequence and let P∗
0, P∗

1 be measures in B∞
ϵ (Pi). Define P∗ =

P∗
0 + P∗

1, η
∗ = dP∗

1/dP∗. If the following two conditions hold:

lim
n→∞

∫
C(η∗, fn)dP∗ =

∫
C∗(η∗)dP∗ (4.17)

lim
n→∞

∫
Sϵ(1fn≤0)dP1 −

∫
1fn≤0dP∗

1 = 0, lim
n→∞

∫
Sϵ(1fn>0)dP0 −

∫
1fn>0dP∗

0 = 0, (4.18)
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then fn is a minimizing sequence of Rϵ.

Proof. Equation 4.17 implies that the limit limn→∞C(η∗, fn)dP∗ exists. Thus (4.17) and

(4.18) imply that

lim
n→∞

Rϵ(fn) = lim
n→∞

∫
Sϵ(1fn≤0)dP1 +

∫
Sϵ(1fn>0)dP0 = lim

n→∞

∫
1fn≤0dP∗

1 +

∫
1fn>0dP∗

0

= lim
n→∞

∫
C(η∗, fn)dP∗ =

∫
C∗(η∗)dP∗ = R̄(P∗

0,P∗
1) .

Therefore, Strong duality (Theorem 77) then implies that

lim
n→∞

Rϵ(fn) ≤ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) = inf
f Borel
R-valued

Rϵ(f)

and therefore, fn is a minimizing sequence.

We end this section by comparing the different criteria for consistency presented in Propo-

sition 71 with Propositions 79 and 80. Together, Propositions 79 and 80 will allow us to

compare minimizing sequences of Rϵ
ϕ to those of Rϵ by showing that any sequence satis-

fying (4.12)–(4.13) must also satisfy (4.17)–(4.18). This statement is the analog to 2) of

Proposition 71. Indeed, because Cϕ(η
∗, fn) ≥ C∗

ϕ(η
∗), (4.12) is actually equivalent to to

Cϕ(η
∗, fn) → C∗

ϕ(η
∗) in L1(P∗). However, the extra criterion (4.18) implies an additional

constraint on the structure of the minimizing sequence. This additional constraint is the

reason 3) of Proposition 71 is false in the adversarial setting. In the restricted situation

where R̄ϕ = R̄, Meunier et al. [42] show that (4.12) implies (4.17) (Proposition 4.2). How-

ever, this observation does not suffice to conclude consistency.
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4.4.2 Adversarial Consistency

We are now in a position to prove consistency. Before presenting the full proof, we pause to

discuss the overall strategy. Consistency will follow from three considerations. First, every

minimizing sequence of Rϵ
ϕ satisfies conditions (4.12) and (4.13). Second, conditions (4.12)

and (4.13) imply the very similar conditions (4.17) and (4.18). Finally, any function sequence

satisfying (4.17) and (4.18) must be a minimizing sequence to Rϵ. The first and last steps

are the content of Propositions 79 and 80, so it remains to justify the middle step.

Verifying that (4.12) implies (4.17) is straightforward. The relation (4.12) actually states

that fn minimizes the standard surrogate risk with respect to the distribution given by P∗
0,

P∗
1. Therefore (4.12) implies (4.17) so long as ϕ is consistent.

The main difficulty is verifying (4.18), due to the discontinuity of 1α<0, 1α≥0 at 0. Due

to this discontinuity, one cannot directly argue that (4.13) implies (4.18): to simplify the

discussion, assume that ϕ is strictly decreasing on a neighborhood of the origin, in which

case 1α<0 = 1ϕ(α)>ϕ(0) and 1α≥0 = 1ϕ(−α)≥ϕ(0). Recall that according to (4.13), in the limit

n → ∞, P∗
0,P∗

1 are the strongest attack in B∞
ϵ (P0) × B∞

ϵ (P1), or informally, Sϵ(ϕ ◦ fn)(x)

approaches ϕ(fn(x
′)) for an optimal perturbation x′ w.h.p., with a similar condition for

ϕ ◦ −fn. However, due to the discontinuity of 1ϕ(−α)≥ϕ(0) at ϕ(0), if fn(x
′) → 0 as n → ∞,

this relation does not imply that 1Sϵ(ϕ◦−fn)(x)≥ϕ(0) approaches 1ϕ◦−fn(x′)≥0.

Lemma 75 says that if C∗
ϕ(1/2) < ϕ(0), minimizers of Cϕ(η, ·) are uniformly bounded

away from 0. This fact suggests that minimizing sequences will also be bounded away from

the origin, which will allow us to avoid the discontinuity there. Concretely, we show:

Lemma 81. Let C∗
ϕ(1/2) < ϕ(0). Then there is a δ > 0 and a c > 0 with ϕ(c) < ϕ(0) for

which α ∈ [−c, c] implies Cϕ(η, α) ≥ C∗
ϕ(η) + δ, uniformly in η. Furthermore, for this value

of c, if α > c then ϕ(α) < ϕ(c).

We prove this lemma in Appendix C.3. Because Cϕ(η
∗, fn) → C∗

ϕ(η
∗) in L1(P∗), Lemma 81
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implies that

lim
n→∞

P∗(fn ∈ [−c, c]) = 0. (4.19)

This relation is the key fact that allows us to show that (4.13) implies (4.18). The

condition C∗
ϕ(1/2) < ϕ(0) is essential for this step of the argument.

Lastly, Lemma 76 implies that
∫
Sϵ(1fn≥0)dP1 ≥

∫
1fn≥0dP∗

1 and thus to validate (4.18),

it suffices to verify the opposite inequality in the limit n→ ∞.

Lemma 82. Let fn be a sequence of functions and let P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1). The

equation

lim sup
n→∞

∫
Sϵ(1fn≤0)dP1 ≤ lim inf

n→∞

∫
1fn≤0dP∗

1 (4.20)

implies the first relation of (4.18) and

lim sup
n→∞

∫
Sϵ(1fn>0)dP0 ≤ lim inf

n→∞

∫
1fn>0dP∗

0 (4.21)

implies the second relation of (4.18).

See Appendix C.6 for a proof. These considerations suffice to prove the main result of

this paper:

Theorem 83. The loss ϕ is adversarially consistent if and only if C∗
ϕ(1/2) < ϕ(0).

Proof. The ‘only if’ portion of the statement is Proposition 73.

To show the ‘if’ statement, recall the standard analysis fact: limn→∞ an = a iff for all

subsequences {anj} of {an}, there is a further subsequence anjk for which limk→∞ anjk = a.

This result implies that to prove Rϵ
ϕ is consistent, it suffices to show that every minimizing

sequence fn of Rϵ
ϕ has a subsequence fnj that minimizes Rϵ.

Let fn be a minimizing sequence of Rϵ
ϕ. For convenience, pick a subsequence fnj for

which the limits limj→∞
∫
Sϵ(1fnj<0)dP0, limj→∞

∫
Sϵ(1fnj≥0)dP1 both exist. For notational

clarity, we drop the j subscript and denote this sequence as fn.
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By Proposition 79, the equations (4.12) and (4.13) hold. We will argue that fn is in fact

a minimizing sequence of Rϵ by verifying the conditions of Proposition 80.

First, the relation (4.12) states that the sequence fn minimizes the standard ϕ-risk for the

distribution given by P∗
0 and P∗

1. As the loss ϕ is consistent by Proposition 74, the sequence

fn must minimize the standard classification risk for the distribution P∗
0,P∗

1. This statement

implies (4.17). Next we will argue that (4.18) holds.

Let c, δ be as in Lemma 81. Because Cϕ(η
∗, fn) ≥ C∗

ϕ(η
∗), (4.12) implies that Cϕ(η

∗, fn)

converges to C∗
ϕ(η

∗) in L1. However, L1 convergence implies convergence in measure (see for

instance Proposition 2.29 of [22]), and therefore limn→∞ P∗(Cϕ(η∗, fn) > C∗
ϕ(η

∗) + δ
)
= 0.

Lemma 81 then implies that for i = 0, 1

lim
n→∞

P∗
i (fn ∈ [−c, c]) = 0. (4.22)

Next, because ϕ is non-increasing, f ≤ 0 implies ϕ(f) ≥ ϕ(0) and thus 1f≤0 ≤ 1ϕ◦f≥ϕ(0).

Furthermore, as the function α 7→ 1α≥0 is monotone and upper semi-continuous,

∫
Sϵ(1fn≤0)dP1 ≤

∫
Sϵ(1ϕ◦fn≥ϕ(0))dP1 ≤

∫
1Sϵ(ϕ◦fn)≥ϕ(0)dP1. (4.23)

Let γi be a coupling between Pi and P∗
i for which ess sup(x,y)∼γi ∥x−y∥ ≤ ϵ. Then the measure

γi is supported on ∆ϵ = {(x,y) : ∥x − y∥ ≤ ϵ}. Furthermore, as Sϵ(ϕ ◦ fn)(x) ≥ ϕ ◦ fn(x′)

everywhere on ∆ϵ, the relation Sϵ(ϕ ◦ fn)(x) ≥ ϕ ◦ fn(x′) actually holds γ1-a.e. Therefore,

(4.13) actually implies that Sϵ(ϕ ◦ fn)(x) − ϕ ◦ fn(x′) converges in γ1-measure to 0. In

particular, since ϕ(c) < ϕ(0), limn→∞ γ1
(
Sϵ(ϕ ◦ fn)(x) − ϕ(fn(x

′)) ≥ ϕ(0) − ϕ(c)
)
= 0 and
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thus limn→∞ γ1(Sϵ(ϕ ◦ fn)(x) ≥ ϕ(0) ∩ ϕ ◦ fn(x′) < ϕ(c)) = 0. Therefore,

lim inf
n→∞

P1(Sϵ(ϕ ◦ fn)(x) ≥ ϕ(0)) = lim inf
n→∞

γ1(Sϵ(ϕ ◦ fn)(x) ≥ ϕ(0) ∩ ϕ ◦ fn(x′) ≥ ϕ(c))

≤ lim inf
n→∞

γ1(ϕ ◦ fn(x′) ≥ ϕ(c)) = lim inf
n→∞

P∗
1(ϕ ◦ fn(x′) ≥ ϕ(c))

This calculation implies

lim inf
n→∞

∫
1Sϵ(ϕ◦fn)(x)≥ϕ(0)dP1 ≤ lim inf

n→∞

∫
1ϕ◦fn(x′)≥ϕ(c)dP∗

1 ≤ lim inf
n→∞

∫
1fn≤cdP∗

1 (4.24)

The last inequality follows because Lemma 81 states that α > c implies ϕ(α) < ϕ(c) and

therefore 1ϕ◦fn≥ϕ(c) ≤ 1fn≤c. Equation 4.22 then implies

lim inf
n→∞

∫
1ϕ◦fn≥ϕ(0)dP∗

1 ≤ lim inf
n→∞

∫
1fn≤cdP∗

1 = lim inf
n→∞

∫
1fn≤−cdP∗

1. (4.25)

Recall that the sequence fn was chosen so that the limit limn→∞
∫
Sϵ(1fn≤0)dP1 exists. Com-

bining this fact with (4.23), (4.24), and (4.25) results in

lim sup
n→∞

∫
Sϵ(1fn≤0)dP1 ≤ lim inf

n→∞

∫
1fn≤−cdP∗

1 ≤ lim inf
n→∞

∫
1fn≤0dP∗

1 (4.26)

The first relation of (4.18) then follows from (4.26) together with Lemma 82.

A similar argument implies the second relation of (4.18). Because 1f>0 = 1−f<0 ≤ 1−f≤0,

the same chain of inequalities as (4.23), (4.24), and (4.25) implies that

lim sup
n→∞

∫
Sϵ(1fn>0)dP0 ≤ lim sup

n→∞

∫
Sϵ(1−fn≤0)dP0 ≤ lim inf

n→∞

∫
1−fn≤−cdP∗

0 = lim inf
n→∞

∫
1fn≥cdP∗

0

As c > 0, it follows that lim supn→∞
∫
Sϵ(1fn>0)dP0 ≤ lim infn→∞

∫
1fn>0dP∗

0. Once again,

the second expression of (4.18) follows from this relation and Lemma 82.
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4.5 Quantitative Bounds for the ρ-Margin Loss

As discussed in the introduction, statistical consistency is not the only property one would

want from a surrogate. Hopefully, minimizing a surrogate will also efficiently minimize the

classification loss. Bartlett, Jordan, and McAuliffe [8], Reid and Williamson [53], and Stein-

wart [57] prove bounds of the form R(f) − R∗ ≤ Gϕ(R
∗
ϕ(f) − Rϕ,∗) for a function Gϕ and

R∗ = inff R(f), Rϕ,∗ = inff Rϕ(f). The function Gϕ is an upper bound on the rate of conver-

gence of the classification risk in terms of the rate of convergence of the surrogate risk. One

would hope that Gϕ is not logarithmic, as such a bound could imply that reducing R(f)−R∗

by a quantity ∆ could require an exponential change of e∆ in Rϕ(f)−Rϕ,∗. Bartlett, Jordan,

and McAuliffe [8] compute such Gϕ for several popular losses in the standard classification

setting. For example, they show the bounds Gϕ(θ) = θ for the hinge loss ϕ(α) = (1 − α)+

and Gϕ(θ) =
√
θ for the squared hinge loss ϕ(α) = (1 − α)2+. On can prove an analogous

bound for the ρ-margin loss in the adversarial setting:

Theorem 84. Let ϕρ = min(1,max(1− α/ρ, 0)) be the ρ-margin loss, Rϵ
∗ = inff R

ϵ(f), and

Rϵ
ϕρ,∗(f) = inff R

ϵ
ϕρ
(f). Then

Rϵ(f)−Rϵ
∗ ≤ Rϵ

ϕρ(f)−Rϵ
ϕρ,∗.

Notice that this theorem immediately implies that the ρ-margin loss is in fact adversari-

ally consistent. The proof below is completely independent of the argument in Section 4.4.

Proof. Notice that for the ρ-margin loss, C∗
ϕρ

= C∗ and therefore, the optimal ϕρ-risk R
ϵ
ϕρ,∗

equals the optimal adversarial classification risk Rϵ
∗. However, since ϕρ(α) ≥ 1α≤0 and

ϕρ(−α) ≥ 1α>0 for any α, one can conclude that Rϵ(f) ≤ Rϵ
ϕρ
(f). Therefore,

Rϵ(f)−Rϵ
∗ = Rϵ(f)−Rϵ

ϕρ,∗ ≤ Rϵ
ϕρ(f)−Rϵ

ϕρ,∗
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This bound implies that reducing the excess adversarial ρ-margin loss by ∆ also reduces

an upper bound on the excess adversarial classification loss by ∆. Thus, one would expect

that minimizing the adversarial ρ-margin risk would be an effective procedure for minimizing

the adversarial classification risk.

Extending Theorem 84 to other losses remains an open problem. In the non-adversarial

scenario, many prior works develop techniques for computing such bounds. These include

the Ψ-transform of [8], calibration analysis in [57], and special techniques for proper losses

in [53].

Contemporary work [40] derives an H-consistency surrogate risk bound for a variant of

the adversarial ρ-margin loss.

4.6 Conclusion

In conclusion, we proved that the adversarial training procedure is consistent for pertur-

bations in an ϵ-ball if an only if C∗
ϕ(1/2) < ϕ(0). The technique that proved consistency

extends to perturbation sets which satisfy existence and minimax theorems analogous to

Theorems 77 and 78. Furthermore, we showed a quantitative excess risk bound for the ad-

versarial ρ-margin loss. Finding such bounds for other losses remains an open problem. We

hope that insights to consistency and the structure of adversarial learning will lead to the

design of better adversarial learning algorithms.
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5 — Adversarial Consistency and

the Uniqueness of the

Adversarial Bayes Classifier

5.1 Introduction

Robustness is a core concern in machine learning, as models are deployed in classification

tasks such as facial recognition [72], medical imaging [47], and identifying traffic signs in

self-driving cars [19]. Deep learning models exhibit a concerning security risk— small per-

turbations imperceptible to the human eye can cause a neural net to misclassify an image

[14, 58]. The machine learning literature has proposed many defenses, but many of these

techniques remain poorly understood. This paper analyzes the statistical consistency of a

popular defense method that involves minimizing an adversarial surrogate risk.

The central goal in a classification task is minimizing the proportion of mislabeled data-

points— also known as the classification risk. Minimizers to the classification risk are easy

to compute analytically, and are known as Bayes classifiers. In the adversarial setting, each

point is perturbed by a malicious adversary before the classifier makes a prediciton. The

proportion of mislabeled data under such an attack is called the adversarial classification

risk, and minimizers to this risk are called adversarial Bayes classifiers. Unlike the standard
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classification setting, computing minimizers to the adversarial classification risk is a non-

trivial task [11, 51]. Further studies [23, 29, 52, 62, 64] investigate additional properties

of these minimizers, and Frank [23] describes a notion of uniqueness for adversarial Bayes

classifiers. The main result in this paper will connect this notion of uniqueness the statistical

consistency of a popular defense method.

The empirical adversarial classification error is a discrete object and minimizing this

quantity is computationally intractable. Instead, typical machine learning algorithms mini-

mize a surrogate risk in place of the classification error. In the robust setting, the adversarial

training algorithm uses a surrogate risk that computes the supremum of loss over the adver-

sary’s possible attacks, which we refer to as adversarial surrogate risks. However, one must

verify that minimizing this adversarial surrogate will also minimize the classification risk. A

loss function is adversarially consistent for a particular data distribution if every minimizing

sequence of the associated adversarial surrogate risk also minimizes the adversarial classifi-

cation risk. A loss is simply called adversarially consistent if it is adversarially consistent

for all possible data distributions. Meunier et al. [42] show that no convex surrogate is ad-

versarially consistent, in contrast to the standard classification setting where most convex

losses are statistically consistent [8, 38, 43, 57, 75].

Our Contributions: We relate the statistical consistency of losses in the adversarial

setting to the uniqueness of the adversarial Bayes classifier. Specifically, under reasonable

assumptions, a convex loss is adversarially consistent for a specific data distribution iff the

adversarial Bayes classifier is unique.

Frank [23] further demonstrates several distributions for which the adversarial Bayes

classifier is unique, and thus a convex loss would be consistent. Understanding general

conditions under which uniqueness occurs is an open question.
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5.2 Related Works

Our results are inspired by prior work which showed that no convex loss is adversarially

consistent [5, 42] yet a wide class of adversarial losses is adversarially consistent [26]. These

consistency results rely on the theory of surrogate losses, studied by Bartlett, Jordan, and

McAuliffe [8] and Lin [38] in the standard classification setting and by Frank and Niles-

Weed [25] and Li and Telgarsky [36] in the adversarial setting. Furthermore, [3, 6, 57]

study a property of related to consistency called calibration, which [42] relate to consistency.

Complimenting this analysis, another line of research studies H-consistency, which refines

the concept of consistency to specific function classes [5, 49]. Our proof combines results

on losses with minimax theorems for various adversarial risks, as studied by [25, 26, 52,

63]. Lastly, this work leverages recent results on the adversarial Bayes classifier, which are

extensively studied by [11, 23, 51, 63].

5.3 Notation and Background

5.3.1 Surrogate Risks

This paper investigates binary classification on Rd with labels {−1,+1}. Class −1 is dis-

tributed according to a a measure P0 and while class +1 is distributed according to measure

P1. A classifier is a Borel set A and the classification risk of a set A is the expected

proportion of errors when label +1 is predicted on A and label −1 is predicted on AC :

R(A) =

∫
1ACdP1 +

∫
1AdP0.

A minimizer to R is called a Bayes classifier. These minimizers can be expressed in terms

of the measure P = P0 + P1 and the function η = dP1/dP. The risk R in terms of these
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quantities is

R(A) =

∫
C(η,1A)dP.

and infAR(A) =
∫
C∗(η)dP where the functions C : [0, 1]× {0, 1} → R and C∗ : [0, 1] → R

are defined by

C(η, b) = ηb+ (1− η)(1− b), C∗(η) = inf
b∈{0,1}

C(η, b) = min(η, 1− η). (5.1)

Thus if A is a minimizer of R, then 1A must minimize the function C(η, ·) P-almost

everywhere. Consequently, the sets

{x : η(x) > 1/2} and {x : η(x) ≥ 1/2} (5.2)

are both Bayes classifiers.

While the Bayes classifier can be described mathematically, minimizing the empirical

classification risk is a computationally intractable problem [9]. A common approach is to

instead minimize a better-behaved alternative called a surrogate risk. As a surrogate to R,

we consider:

Rϕ(f) =

∫
ϕ(f)dP1 +

∫
ϕ(−f)dP0 . (5.3)

The loss ϕ is selected so that the resulting risk is easy to optimize. We assume

Assumption 3. The loss ϕ is non-increasing, continuous, and limα→∞ ϕ(α) = 0.

A classifier is obtained by minimizing Rϕ over all measurable functions and then thresh-

olding f at 0: explicitly, the classifier is A = {x : f(x) > 0}. Due to this construction, we

define

R(f) = R({f > 0}) (5.4)

for a function f .
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One can compute the infimum of Rϕ by expressing the risk in terms of the quantities P

and η:

Rϕ(f) =

∫
Cϕ(η(x), f(x))dP (5.5)

and inff Rϕ(f) =
∫
C∗
ϕ(η(x))dP(x) where the functions Cϕ(η, α) and C

∗
ϕ(η) are defined by

Cϕ(η, α) = ηϕ(α) + (1− η)ϕ(−α), C∗
ϕ(η) = inf

α
Cϕ(η, α) (5.6)

for η ∈ [0, 1]. Thus a minimizer f of Rϕ must minimize Cϕ(η(x), ·) almost everywhere

according to the probability measure P. The following lemma describes a method for mapping

η(x) to a minimizer of Cϕ(η(x), ·).

Lemma 85. The function αϕ : [0, 1] → R that maps η to the smallest minimizer of Cϕ(η, ·)

is non-decreasing.

See Appendix D.1 for a proof. Because αϕ is monotonic, the composition

αϕ(η(x)) (5.7)

is always measurable, and thus this function is a minimizer of Rϕ. Allowing for minimizers

in extended real numbers R = {−∞,+∞} ∪ R is necessary for certain losses— for instance

when ϕ is the exponential loss, then Cϕ(1, α) = e−α does not assume its infimum on R.

5.3.2 Adversarial Surrogate Risks

In the adversarial setting, a malicious adversary corrupts each data point. We model these

corruptions as bounded by ϵ in some norm ∥·∥. The adversary knows both the classifier A and

the label of each data point. Thus, a point (x,+1) is misclassified when it can be displaced

into the set AC by a perturbation of size at most ϵ. This statement can be conveniently
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written in terms of a supremum. For any function g : Rd → R, define

Sϵ(g)(x) = sup
x′∈Bϵ(x)

g(x′),

where Bϵ(x) = {x′ : ∥x′ − x∥ ≤ ϵ} is the ball of allowed perturbations. The expected error

rate of a classifier A under an adversarial attack is then

Rϵ(A) =

∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0,

which is known as the adversarial classification risk 1. Minimizers of Rϵ are called adversarial

Bayes classifiers.

Just like Equation (5.4), we define Rϵ(f) = Rϵ({f > 0}):

Rϵ(f) =

∫
Sϵ(1f≤0)dP1 +

∫
Sϵ(1f>0)dP0

Again, minimizing an empirical adversarial classification risk is computationally intractable.

A surrogate to the adversarial classification risk is formulated as2

Rϵ
ϕ(f) =

∫
Sϵ(ϕ ◦ f)dP1 +

∫
Sϵ(ϕ ◦ −f)dP0. (5.8)

Theorem 9 of [25] then extends the construction of a minimizer in Equation (5.7) to the

adversarial setting.

Theorem 86. Let αϕ be the function in Lemma 85. Then for any distribution P0, P1, there

is a function η̂ : Rd → [0, 1] for which αϕ(η̂(x)) is a minimizer of Rϵ
ϕ for any loss ϕ.

The function η̂ can be viewed as the conditional probability of label +1 under an ‘optimal’

1The functions Sϵ(1A), Sϵ(1AC ) must be measurable in order to define this integral. See [25, Section 3.3]
for a treatment of this matter.

2Again, see See [25, Section 3.3] for a treatment of measurability.
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adversarial attack [25]. Just as in the standard learning scenario, the function α(η̂(x)) may

be R-valued. Furthermore, recall that Bayes classifiers can be constructed by theshholding

the conditional probability η at 1/2, as in Equation (5.2). The function η̂ plays an analogous

role for adversarial learning.

Theorem 87. Let P0 and P1 be finite measures and let η̂ be the function described by Theo-

rem 86. Then the sets {η̂ > 1/2} and {η̂ ≥ 1/2} are adversarial Bayes classifiers. Further-

more, any adversarial Bayes classifier A satisfies

∫
Sϵ(1{η̂≥1/2}C )dP1 ≤

∫
Sϵ(1A)dP1 ≤

∫
Sϵ(1{η̂>1/2)C )dP1 (5.9)

and ∫
Sϵ(1{η̂>1/2})dP0 ≤

∫
Sϵ(1A)dP0 ≤

∫
Sϵ(1{η̂≥1/2})dP0 (5.10)

See Appendix D.3 for a proof and more about the function η̂. Equations (5.9) and (5.10)

imply that the sets {η̂ > 1/2} and {η̂ ≥ 1/2} can be viewed as ‘minimal’ and ‘maximal’

adversarial Bayes classifiers.

5.3.3 The Statistical Consistency of Surrogate Risks

Learning algorithms typically minimize a surrogate risk using an iterative procedure, thereby

producing a sequence of functions fn. One would hope that that fn also minimizes that

corresponding classification risk. This property is referred to as statistical consistency3.

Definition 88. • If every sequence of functions fn that minimizes Rϕ also minimizes R

for the distribution P0,P1, then the loss ϕ is consistent for the distribution P0,P1. If

Rϕ is consistent for every distribution P0,P1, we say that ϕ is consistent.

3This concept is referred to as calibration in the non-adversarial machine learning context [8, 57]. We use
the term ‘consistent’, as prior work on adversarial learning [4, 42] use ‘calibration’ to refer to a different but
related concept.
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• If every sequence of functions fn that minimizes Rϵ
ϕ also minimizes Rϵ for the distribu-

tion P0,P1, then the loss ϕ is adversarially consistent for the distribution P0,P1 . If R
ϵ
ϕ

is adversarially consistent for every distribution P0,P1, we say that ϕ is adversarially

consistent.

A case of particular interest is convex ϕ, as these losses are ubiquitous in machine learning.

In the non-adversarial context, Theorem 2 of [8] shows that a convex loss ϕ is consistent iff

ϕ is differentiable at zero and ϕ′(0) < 0. In contrast, Meunier et al. [42] show that no

convex loss is adversarially consistent. Further results of [26] characterize the adversarially

consistent losses in terms of the function C∗
ϕ:

Theorem 89. The loss ϕ is adversarially consistent if and only if C∗
ϕ(1/2) < ϕ(0).

Notice that all convex losses satisfy C∗
ϕ(1/2) = ϕ(0): By evaluating at α = 0, one can

conclude that C∗
ϕ(1/2) = infαCϕ(1/2, α) ≤ Cϕ(1/2, 0) = ϕ(0). However,

C∗
ϕ(1/2) = inf

α

1

2
ϕ(α) +

1

2
α(−α) ≥ ϕ(0)

due to convexity. Notice that Theorem 89 does not preclude the adversarial consistency of

a loss satisfying C∗
ϕ(1/2) = ϕ(0) for any particular P0,P1. Prior work [26, 42] provides a

counterexample to consistency only for a single, atypical distribution. The goal of this paper

is characterizing when adversarial consistency fails for losses satisfying C∗
ϕ(1/2) = ϕ(0).

5.4 Main Result

Prior work has shown that there always exists minimizers to the adversarial classification

risk, which are referred to as adversarial Bayes classifiers (see Theorem 93 below). Frank

[23] further develops a notion of uniqueness for adversarial Bayes classifiers.
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Definition 90. The adversarial Bayes classifiers A1 and A2 are equivalent up to degeneracy

if any Borel set A with A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2 is also an adversarial Bayes classifier.

The adversarial Bayes classifier is unique up to degeneracy if any two adversarial Bayes

classifiers are unique up to degeneracy.

When P is absolutely continuous with respect to Lebesgue measure, then equivalence up

to degeneracy is an equivalence relation [23, Theorem 3.3]. The central result of this paper

relates the consistency of convex losses to the uniqueness of the adversarial Bayes classifier.

Theorem 91. Assume that P is absolutely continuous with respect to Lebesgue measure and

let ϕ be a loss with C∗
ϕ(1/2) = ϕ(0). Then ϕ is adversarially consistent for the distribution

P0, P1 iff the adversarial Bayes classifier is unique up to degeneracy.

Frank [23] provides the tools for verifying when the adversarial Bayes classifier is unique

up to degeneracy for a wide class of one dimensional distributions. Below we highlight two

interesting examples. Let p1 be the density of P1 and p0 be the density of P0.

• Consider mean zero gaussians with different variances: p0(x) = 1
2
√
2πσ0

e−x
2/2σ2

0 and

p1(x) =
1

2
√
2πσ1

e−x
2/2σ2

1 . The adversarial Bayes classifier is unique up to degeneracy for

all ϵ for this distribution [23, Example 4.1].

• Consider gaussians with variance σ and means µ0 and µ1: p0(x) = 1√
2πσ

e−(x−µ0)2/2σ2

and p1(x) = 1√
2πσ

e−(x−µ1)2/2σ2
. Then the adversarial Bayes classifier is unique up to

degeneracy iff ϵ < |µ1 − µ0|/2 [23, Example 4.2].

Theorem 91 implies that a convex loss is always adversarially consistent for the first gaussian

mixture above. Furthermore, a convex loss is adversarially consistent for the second gaussian

mixture when the perturbation radius ϵ is small compared to the differences between the

means. However, Frank [23, Example 4.5] provide an example of a distribution for which

the adversarial Bayes classifier is not unique up to degeneracy for all ϵ > 0, even though the
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Bayes classifier is unique. Understanding when the adversarial Bayes classifier is unique up

to degeneracy for reasonable distributions is an open problem.

5.5 Uniqueness up to Degeneracy implies

Consistency

The proof of the forward direction in Theorem 91 relies on a dual formulation of the adversar-

ial classification problem involving the Wasserstein-∞ metric. This tool is presented in the

next section and is then used to prove the forward direction of Theorem 91 in Section 5.5.2.

5.5.1 Background— A Dual Problem for the Adversarial

Classification Risk

Informally, a measure Q′ is within ϵ of Q in the Wasserstein-∞ metric if one can produce

Q′ by perturbing each point in Rd by at most ϵ under the measure Q. The formal definition

of the Wasserstein−∞ metric involves couplings between probability measures: a coupling

between two Borel measures Q and Q′ with Q(Rd) = Q′(Rd) is a measure γ on Rd×Rd with

marginals Q and Q′: γ(A × Rd) = Q(A) and γ(Rd × A) = Q′(A) for any Borel set A. The

set of all such couplings is denoted Π(Q,Q′). The ∞-Wasserstein distance between the two

measures is then

W∞(Q,Q′) = inf
γ∈Π(Q,Q′)

ess sup
(x,x′)∼γ

∥x− x′∥

Theorem 2.6 of [33] proves that this infimum is always assumed. Equivalently,W∞(Q,Q′) ≤ ϵ

iff there is a coupling between Q and Q′ supported on

∆ϵ = {(x,x′) : ∥x− x′∥ ≤ ϵ}.
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Let B∞
ϵ (Q) = {Q′ : W∞(Q,Q′) ≤ ϵ} be the set of measures within ϵ of Q in the W∞ metric.

The minimax relations from prior work leverage a relationship between the Wasserstein-∞

metric and the integral of the supremum function over an ϵ-ball.

Lemma 92. Let E be a Borel set. Then

∫
Sϵ(1E)dQ ≥ sup

Q′∈B∞
ϵ (Q)

∫
1EdQ′

See Appendix D.2 for a proof. Consequently,

inf
f
Rϵ(f) ≥ inf

f
sup

P′
0∈Bϵ(P0)

P′
1∈Bϵ(P1)

∫
1f≤0dP′

1 +

∫
1f>0dP0.

Does equality hold and can one swap the infimum and the supremum? [26, 52] answer this

question in the affirmative:

Theorem 93. Let P0, P1 be finite Borel measures. Define

R̄(P∗
0,P∗

1) =

∫
C∗
(

dP∗
1

d(P∗
0 + dP∗

1)

)
d(P∗

0 + P∗
1)

where the function C∗ is defined in Equation (5.1). Then

inf
f Borel
R-valued

Rϵ(f) = sup
P′
1∈B∞

ϵ (P1)
P′
0∈B∞

ϵ (P0)

R̄(P′
0,P′

1)

and furthermore equality is attained for some f ∗, P∗
0, P∗

1.

See Theorem 1 of [26] for a proof. Theorems 6, 8, and 9 of [25] show an analogous

minimax theorem for surrogate risks.
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Theorem 94. Let P0, P1 be finite Borel measures. Define

R̄ϕ(P∗
0,P∗

1) =

∫
C∗
ϕ

(
dP∗

1

d(P∗
0 + dP∗

1)

)
d(P∗

0 + P∗
1)

where the function C∗
ϕ is defined in Equation (5.6). Then

inf
f Borel
R-valued

Rϵ
ϕ(f) = sup

P′
1∈B∞

ϵ (P1)
P′
0∈B∞

ϵ (P0)

R̄ϕ(P′
0,P′

1)

and furthermore equality is attained for some f ∗, P∗
0, P∗

1.

Just like Rϕ, the risk Rϵ
ϕ may not have an R-valued minimizer. However, Lemma 8 of

[26] states that

inf
f Borel
R-valued

Rϵ
ϕ(f) = inf

f Borel
R-valued

Rϵ
ϕ(f).

Additionally, there exists a maximizer to R̄ϕ with especially nice properties. Let Iϵ denote

the infimum of a function over an ϵ ball:

Iϵ(g) = inf
x′∈Bϵ(x)

g(x′) (5.11)

Lemma 24 of [25] proves the following result:

Theorem 95. There exists a function η̂ : Rd → [0, 1] and measures P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈

B∞
ϵ (P1) for which

I) η̂ = η∗ P∗-a.e., where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗

II) Iϵ(η̂)(x) = η̂(x′) γ∗0-a.e. and Sϵ(η̂)(x) = η̂(x′) γ∗1-a.e., where γ∗0 , γ
∗
1 are couplings

between P0, P∗
0 and P1, P∗

1 supported on ∆ϵ.

This result implies Theorem 86: Item I) and Item II) imply that Rϵ
ϕ(αϕ(η̂)) = R̄ϕ(P∗

0,P∗
1)

and Theorem 94 then implies that αϕ(η̂) is a minimizer of Rϵ
ϕ and P∗

0, P∗
1 maximize R̄ϕ.
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(A similar argument is given in the proof of Lemma 180 of Appendix D.6.1 in this paper.)

Furthermore, the relation Rϵ
ϕ(αϕ(η̂)) = R̄ϕ(P∗

0,P∗
1) also implies

Lemma 96. The P∗
0, P∗

1 of Theorem 95 maximize R̄ϕ over B∞
ϵ (P0)× B∞

ϵ (P1) for every ϕ.

See [25, Lemma 26] for more details. Theorem 87 is proved analogously to Theorem 86 in

Appendix D.3– Item I) and Item II) imply that Rϵ({η̂ > 1/2}) = R̄(P∗
0,P∗

1) = Rϵ(η̂ ≥ 1/2})

and consequently Theorem 93 implies that {η̂ > 1/2}, {η̂ ≥ 1/2} minimize Rϵ and P∗
0, P∗

1

maximize R̄. Lastly, uniqueness up to degeneracy can be characterized in terms of these

P∗
0,P∗

1.

Theorem 97. Assume that P is absolutely continuous with respect to Lebesgue measure.

Then the following are equivalent:

A) The adversarial Bayes classifier is unique up to degeneracy

B) P∗(η∗ = 1/2) = 0, where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗ for the measures P∗

0,P∗
1 of

Theorem 95.

See Appendix D.4 for a proof of Theorem 97.

5.5.2 Proving that Uniqueness implies Consistency

Before presenting the full proof of consistency, we provide an overview the strategy of this

argument. Approximate complementary slackness conditions derived in [26] describe mini-

mizing sequences of Rϵ
ϕ.

Proposition 98. Assume that the measures P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) maximize R̄ϕ. Then

any minimizing sequence fn of Rϵ
ϕ must satisfy

lim
n→∞

∫
Cϕ(η

∗, fn)dP∗ =

∫
C∗
ϕ(η

∗)dP∗ (5.12)
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lim
n→∞

∫
Sϵ(ϕ◦fn)dP1− lim

n→∞

∫
ϕ◦fndP∗

1 = 0, lim
n→∞

∫
Sϵ(ϕ◦−fn)dP∗

0− lim
n→∞

∫
ϕ◦−fndP∗

0 = 0

(5.13)

where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗.

We will show that when P∗(η∗ = 1/2) = 0, every sequence of functions satisfying Equa-

tion (5.12) and Equation (5.13) must minimize Rϵ. Specifically, we will prove that every

minimizing sequence fn of Rϵ
ϕ must satisfy

lim sup
n→∞

∫
Sϵ(1fn≤0)dP1 ≤

∫
1η∗≤ 1

2
dP∗

1 (5.14)

and

lim sup
n→∞

∫
Sϵ(1fn≥0)dP0 ≤

∫
1η∗≥ 1

2
dP∗

0 (5.15)

for the measures P∗
0, P∗

1 in Theorem 95. Consequently, P∗(η∗ = 1/2) = 0 implies that

lim supn→∞Rϵ(fn) ≤ R̄(P∗
0,P∗

1) and the strong duality relation in Theorem 93 implies that

fn must in fact be a minimizing sequence of Rϵ.

We next describe the proof of Equation (5.14). We make several simplifying assumptions

in the following discussion. First, we assume that the functions ϕ, αϕ are strictly monotonic

and that for each η, there is a unique value of α for which ηϕ(α) + (1 − η)ϕ(−α) = C∗
ϕ(η).

(For instance, the exponential loss ϕ(α) = e−α satisfies these requirements.) Let γ∗1 be a

coupling between P1 and P∗
1 supported on ∆ϵ.

Because Cϕ(η
∗, fn) ≥ C∗

ϕ(η
∗), the condition Equation (5.12) implies that Cϕ(η

∗, fn)

converges to C∗
ϕ(η

∗) in L1(P∗), and the assumption that there is a single value of α for

which ηϕ(α) + (1 − η)ϕ(−α) = C∗
ϕ(η) implies that the function ϕ(fn(x

′)) must converge to

ϕ(αϕ(η
∗(x′)) in L1(P∗

1). Similarly, because Lemma 92 states that Sϵ(ϕ ◦ fn)(x) ≥ ϕ ◦ fn(x′)

γ∗1-a.e., Equation (5.13) implies that Sϵ(ϕ ◦ fn)(x) − ϕ ◦ fn(x′) converges to 0 in L1(γ∗1).

Consequently Sϵ(ϕ ◦ fn)(x) must converge to ϕ(αϕ(η
∗(x′))) in L1(γ∗1). As L1 convergence
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implies convergence in measure [22, Proposition 2.29], one can conclude that

lim
n→∞

γ∗1(Sϵ(ϕ(fn))(x)− ϕ ◦ (αϕ(x′)) > c) = 0

for any c > 0. The lower semi-continuity of α 7→ 1α≤0 implies that
∫
Sϵ(1fn≤0)dP1 ≤∫

1Sϵ(ϕ(fn))(x)≥ϕ(0)dP1 and furthermore

lim sup
n→∞

∫
1Sϵ(ϕ(fn))(x)≥ϕ(0)dγ

∗
1 ≤

∫
1ϕ(αϕ(η∗(x′)))<ϕ(0)−cdγ

∗
1 =

∫
1η∗≥α−1

ϕ ◦ϕ−1(ϕ(0)−c)dP
∗
1.

(5.16)

Next, we will also assume that α−1
ϕ is continuous and αϕ(1/2) = 0. (The exponential loss

satisfies this assumption as well.)

Due to our assumptions on ϕ and αϕ, the quantity ϕ−1(ϕ(0)− c) is strictly smaller than

0, and consequently, α−1
ϕ ◦ ϕ−1(ϕ(0) − c) is strictly smalaler than 1/2. However, if α−1

ϕ is

continuous, one can choose c small enough so that P∗(|η−1/2| < 1/2−α−1
ϕ ◦ϕ−1(ϕ(0)−c)) < δ

for any δ > 0 when P∗(η∗ = 1/2) = 0. This choice of c along with Equation (5.16) proves

Equation (5.14).

To avoid the prior assumptions on ϕ and α, we prove that when η is bounded away from

1/2 and α is bounded away from the minimizers of Cϕ(η, ·), then Cϕ(η, α) is bounded away

from C∗
ϕ(η).

Lemma 99. Let ϕ be a consistent loss. For all r > 0, there is a constant kr > 0 and an

αr > 0 for which if |η − 1/2| ≥ r and sign(η − 1/2)α ≤ αr then Cϕ(η, αr)−C∗
ϕ(η) ≥ kr, and

this αr satisfies ϕ(αr) < ϕ(0).

See Appendix D.5 for a proof. A minor modification of this argument proves our main

result:

Proposition 100. Assume there exist P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) that maximize R̄ϕ for

which P∗(η∗ = 1/2) = 0. Then any consistent loss is adversarially consistent.
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When P is absolutely continuous with respect to Lebesgue measure, uniqueness up to

degeneracy of the adversarial Bayes classifier implies the conditions of this propositon.

Proof. We will show that every minimizing sequence of Rϵ
ϕ must satisfy Equation (5.14) and

Equation (5.15). These equations together with the assumption P∗(η∗ = 1/2) = 0 imply

that

lim sup
n→∞

Rϵ(fn) ≤
∫

1η∗≤ 1
2
dP∗

1+

∫
1η∗≥ 1

2
dP∗

0 =

∫
η∗1η∗≤1/2+(1−η∗)1η∗>1/2dP∗ = R̄(P∗

0,P∗
1).

The strong duality result of Theorem 93 then implies that fn must be a minimizing sequence

of Rϵ.

Let δ be arbitrary and due to the assumption P∗(η∗ = 1/2) = 0, one can pick an r for

which

P∗(|η∗ − 1/2| < r) < δ. (5.17)

Next, let αr, kr be as in Lemma 99.

Let γ∗i be couplings between Pi and P∗
i supported on ∆ϵ. Lemma 92 implies that Sϵ(ϕ ◦

fn)(x) ≥ ϕ ◦ fn(x′) γ∗1-a.e., and thus Equation (5.13) implies that Sϵ(ϕ ◦ fn)(x)− ϕ ◦ fn(x′)

converges to 0 in L1(γ∗1). Because convergence in L1 implies convergence in measure [22,

Proposition 2.29], Sϵ(ϕ ◦ fn)(x)−ϕ ◦ fn(x′) converges to 0 in γ∗1-measure. Similarly, one can

conclude that Sϵ(ϕ ◦ −fn)(x) − ϕ ◦ −fn(x′) converges to zero in γ∗0-measure. Additionally,

as C∗
ϕ(η

∗, fn) ≥ C∗
ϕ(η

∗), Equation (5.12) implies that C∗
ϕ(η

∗, fn) converges in P∗-measure to

C∗
ϕ(η

∗). Therefore, Proposition 98 implies that one can choose N large enough so that n > N

implies

γ∗1

(
Sϵ(ϕ ◦ fn)(x)− ϕ ◦ fn(x′) ≥ ϕ(0)− ϕ(αr)

)
< δ, (5.18)

γ∗0

(
Sϵ(ϕ ◦ −fn)(x)− ϕ ◦ −fn(x′) ≥ ϕ(0)− ϕ(αr)

)
< δ, (5.19)

and P∗(C∗
ϕ(η

∗, fn) > C∗
ϕ(η

∗)+kr) < δ. The relation P∗(C∗
ϕ(η

∗, fn) > C∗
ϕ(η

∗)+kr) < δ implies
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that

P∗(|η∗ − 1/2| ≥ r, fn sign(η
∗ − 1/2) ≤ αr

)
< δ (5.20)

due to Lemma 99. Because ϕ is non-increasing, 1fn≤0 ≤ 1ϕ◦fn≥ϕ(0) and since the function

z 7→ 1z≥ϕ(0) is upper semi-continuous,

∫
Sϵ(1fn≤0)dP1 ≤

∫
1Sϵ(ϕ◦fn)≥ϕ(0)dP1 =

∫
1Sϵ(ϕ◦fn)(x)≥ϕ(0)dγ

∗
1 = γ∗1(Sϵ(ϕ ◦ fn)(x) ≥ ϕ(0)).

Now Equation (5.18) implies that for n > N , outside a set of γ∗1-measure δ, Sϵ(ϕ ◦ fn)(x) <

(ϕ ◦ fn)(x′) + ϕ(0)− ϕ(αr) and thus

∫
Sϵ(1fn≤0)dP1 ≤ γ∗1

(
ϕ ◦ fn(x′)+ϕ(0)−ϕ(αr) > ϕ(0)

)
+ δ ≤ P∗

1

(
ϕ ◦ fn > ϕ(αr)

)
+ δ (5.21)

Next, the monotonicity of ϕ implies that P∗
1(ϕ ◦ fn(x′) > ϕ(αr)) ≤ P∗

1(fn < αr) and thus

Equation (5.17) implies

∫
Sϵ(1fn≤0)dP1 ≤ P∗

1(fn < αr) + δ ≤ P∗
1(fn < αr, |η∗ − 1/2| ≥ r) + 2δ. (5.22)

Next, Equation (5.20) implies P∗
1(η

∗ ≥ 1/2 + r, fn ≤ αr) < δ and consequently

∫
Sϵ(1fn≤0)dP1 ≤ P∗

1(fn > αr, η
∗ ≤ 1/2− r) + 3δ ≤ P∗

1(η
∗ ≤ 1/2) + 3δ.

Because δ is arbitrary, this relation implies Equation (5.14). Observe that 1f≥0 = 1−f≤0,

and thus the inequalities Equations (5.21) and (5.22) hold with −fn in place fn, P0, P∗
0, γ

∗
0

in place of P1,P∗
1, γ

∗
1 , and Equation (5.19) in place of Equation (5.18) resulting in

∫
Sϵ(1fn≥0)dP0 ≤ P∗

0(fn < −αr, |η∗ − 1/2| ≥ r) + 2δ.
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Next, Equation (5.20) implies P∗
1(η

∗ ≤ 1/2− r, fn ≥ −αr) < δ and consequently

∫
Sϵ(1fn≥0)dP0 ≤ P∗

0(fn < −αr, η∗ ≥ 1/2 + r) + 3δ ≤ P∗
0(η

∗ ≥ 1/2) + 3δ.

Because δ is arbitrary, this relation implies Equation (5.15).

5.6 Consistency Requires Uniqueness up to

Degeneracy

We prove the reverse direction of Theorem 91 by constructing a sequence of of functions fn

that minimize Rϵ
ϕ for which Rϵ(fn) is constant in n and not equal to the minimal adversarial

Bayes risk.

Proposition 101. Assume that P0,P1 are absolutely continuous with respect to Lebesgue

meaure the adversarial Bayes classifier is not unique up to degeneracy for the distribution

P0,P1. Then any consistent loss ϕ satisfying C∗
ϕ(1/2) = ϕ(0) is not adversarially consistent.

First, Theorem 87 together with a result of [23] imply the adversarial Bayes classifier is

unique iff {η̂ > 1/2} and {η̂ ≥ 1/2} are equivalent up to degeneracy, see Appendix D.6 for

proof.

Lemma 102. Assume P is absolutely continuous with respect to Lebesgue measure. Then

adversarial Bayes classifier is unique up to degeneracy iff the adversarial Bayes classifiers

{η̂ > 1/2} and {η̂ ≥ 1/2} are equivalent up to degeneracy.

Therefore, if the adversarial Bayes classifier is not unique up to degeneracy, then there

is a set Ã that is not an adversarial Bayes classifier but {η̂ > 1/2} ⊂ Ã ⊂ {η̂ ≥ 1/2}.

Theorem 86 suggests that a minimizer of Rϵ
ϕ can equal zero only when η̂ = 1/2. Thus we
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select a sequence fn that is strictly positive on Ã, strictly negative on ÃC , and approaches 0

on {η̂ = 1/2}. Consider the sequence

fn(x) =


αϕ(η̂(x)) η̂(x) ̸= 1/2

1
n

η̂(x) = 1/2,x ∈ Ã

− 1
n

η̂(x) = 1/2,x ̸∈ Ã

(5.23)

Then Rϵ(fn) = Rϵ(Ã) > infAR
ϵ(A) for all n and one can show that fn is a minimizing

sequence of Rϵ
ϕ. However, fn may assume the values ±∞ because the function αϕ is R-valued.

A slight modification of these functions produces an R-valued sequence that minimizes Rϵ
ϕ

but Rϵ(fn) = Rϵ(Ã) for all n. See Appendix D.6 for a formal proof.

5.7 Conclusion

In summary, we prove that under a reasonable distributional assumption, a convex loss is

adversarially consistent iff the adversarial Bayes classifier is unique up to degeneracy. This

result connects an analytical property of the adversarial Bayes classifier to a statistical prop-

erty of surrogate risks. Hopefully, this connection will aid in the analysis and development

of further algorithms for adversarial learning.
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6 — Conclusion

This thesis provides an array of tools for understanding adversarial risks. Insights from these

tools include an explanation of the phenomenon of transfer attacks, formulas for minimizers

of these risks, and a characterization of the consistency of these surrogate risks. Hopefully,

the results from this research will assist in the development of algorithms for robust learning.
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Appendices
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A — Deferred Proofs from

Chapter 2

A.1 The Universal σ-Algebra and a Generalization

of Theorem 1

A.1.1 Definition of the Universal σ-Algebra and Main

Measurability Result

In this Appendix, we prove results for supremums over an arbitrary compact set, not nec-

essarily a unit ball. For a function g : Rd → Rd, we will abuse notation and denote the

supremum of g over the compact set B by

SB(g)(x) = sup
h∈B

g(x+ h).

Let X be a separable metric space and let B(X) be the Borel σ-algebra on X. Denote

the completion of B(X) with respect to a Borel measure ν by Lν(X). Let M+(X) be the
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set of all finite1 positive Borel measures on X. Then the universal σ-algebra on X, U (X) is

U (X) =
⋂

ν∈M+(X)

Lν(X). (A.1)

In other words, the universal σ-algebra is the sigma-algebra of sets which are measurable

with respect to the completion of every Borel measure. Thus U (X) is contained in Lν(X)

for every Borel measure ν. The goal of this appendix is to prove

Theorem 103. If f is universally measurable and B is a compact set, then SB(f) is uni-

versally measurable.

Thus, if P0,P1, and g are Borel, integrals of the form
∫
Sϵ(g)dPi in (2.10) can be inter-

preted as the integral of Sϵ(g) with respect to the completion of Pi.

A.1.2 Proof Outline

To prove Theorem 103, we analyze the level sets of SB(g). One can compute the level set

[SB(g)(x) > a] using a direct sum.

Lemma 104. Let g : Rd → Rd be any function. For a set B, define −B = {−b : b ∈ B}.

Then

[SB(g) > a] = [g > a]⊕−B

Proof. To start, notice that SB(g)(x) > a iff there is some h ∈ B for which g(x + h) > a.

Thus

x ∈ [SB(g) > a] ⇔ x+ h ∈ [g > a] for some h ∈ B ⇔ x ∈ [g > a]⊕−B

1Alternatively, one could compute the intersection in (A.1) over all σ-finite measures. These two ap-
proaches are equivalent because for every σ-finite measure λ and compact set K, the restriction λ K is a
finite measure with Lλ K(X) ⊃ Lλ(X).
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Therefore, to show that SB(g) is measurable for measurable g, it suffices to show that

the direct sum of a measurable set and the compact set B is measurable. Thus, to prove

Theorem 103, it suffices to demonstrate the following result:

Theorem 105. Let A ∈ U (Rd) and let B be a compact set. Then A⊕B ∈ U (Rd).

The proof of Theorem 105 follows from fundamental concepts of measure theory. A

classical measure theory result states that if f : X → Y is a continuous function, f−1 maps

Borel sets in Y to Borel sets in X. Consider now the function w : B×Rd → B×Rd given by

w(h,x) = (h,x−h). Then w is invertible and the inverse of w is w−1(h,x+h). Furthermore,

w−1 maps the set B×A to B×A⊕B. Therefore, if A ∈ B(Rd), then B×A⊕B is Borel in

B(B × Rd). However, from this statement, one cannot conclude that A⊕ B is Borel in Rd!

On the otherhand, one can use regularity of measures to conclude that A⊕ B is in U (Rd).

Therefore, to prove Theorem 105, we prove the following two results:

Lemma 106. Let B ⊂ Rd be a compact set. Then B × A ∈ U (B × Rd) iff A ∈ U (Rd).

In this document, we say a function f : X → Y is universally measurable if f−1(E) ∈

U (X) whenever E ∈ U (Y ).

Lemma 107. Let f : X → Y be a Borel measurable function. Then f is universally

measurable as well.

This result is stated on page 171 of [10], but we include a proof below for completeness.

Lemma 107 applied to w implies that the set B ×A⊕B is universally measurable while

Lemma 106 implies that A⊕B is universally measurable.

A.1.3 Proof of Theorem 105

We begin by proving Lemma 107.
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Proof of Lemma 107. Let A be a Borel set in Y . We will show that for any finite measure

ν on X, f−1(A) ∈ Lν(X). As ν is arbitrary, this statement will impy that f−1(A) ∈ U (X).

Consider the pushforward measure µ = f♯ν. This measure is a finite measure on Y , so

by the definition of U (Y ), A ∈ Lµ(Y ). Therefore, there are Borel sets B1 ⊂ A ⊂ B2 in Y

for which µ(B1) = µ(B2). Thus, f
−1(B1), f

−1(B2) are Borel sets in X for which f−1(B1) ⊂

f−1(A) ⊂ f−1(B2) and ν(f
−1(B1)) = ν(f−1(B2)). Therefore, f

−1(A) ∈ Lν(X).

On the other hand, the proof of Lemma 106 relies on the definition of a regular space X:

Definition 108. A measure ν is inner regular if for every Borel set A,

ν(A) = sup
K compact
K⊂A

ν(K).

The topological space X is regular if every finite Borel measure on X is inner regular.

The following result implies that most topological spaces encountered in applications are

regular.

Theorem 109. A σ-compact locally compact Hausdorff space is regular.

This theorem is is a consequence of Theorem 7.8 of [22].

The notion of regularity extends to complete measures.

Lemma 110. Let ν be the completion of a measure ν on a regular space X. Then for any

A ∈ Lν(X),

ν(A) = sup
K compact
K⊂A

ν(K).

The proof of this result is left as a exercise to the reader.

Now using the concept of regularity, we prove Lemma 106.

Proof of Lemma 106. We first prove the forward direction. Consider the projection function

Π2 : B × Rd → Rd given by Π2(x,y) = y. Then Π2 is a continuous function and Π−1
2 (A) =
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B ×A. Therefore Lemma 107 implies that if A is universally measurable in Rd, then B ×A

is universally measurable in B × Rd.

To prove the other direction, assume that B × A is universally measurable in B × Rd.

Let ν be any finite Borel measure on Rd. We will find Borel sets B1, B2 with B1 ⊂ A ⊂ B2

for which ν(B1) = ν(B2), and thus A ∈ Lν(Rd). As ν was arbitrary, it follows that A is

universally measurable.

Theorem 109 implies that B × Rd is a regular space. Fix a Borel probability measure λ

on B. Then λ × ν is a finite Borel measure on B × Rd, so it is inner regular. Let λ× ν be

the completion of λ× ν. Then by Lemma 110,

λ× ν(B × A) = sup
K compact
K⊂B×A

λ× ν(K)

We will now argue that

sup
K compact
K⊂B×A

λ× ν(K) = sup
K compact
K⊂A

ν(K) (A.2)

Let K ⊂ B×A and let Π2 be projection onto the second coordinate. Because the continuous

image of a compact set is compact, K’=Π2(K) is compact and contained in A. Thus B×A ⊃

B ×K ′ ⊃ K, which implies (A.2). Now (A.2) applied to AC implies that

λ× ν(X × A) = inf
UC compact
U⊃B×A

λ× ν(U) = inf
UC compact

U⊃A

ν(U).

Thus

sup
K compact
K⊂A

ν(K) = inf
UC compact

U⊃A

ν(U) := m

Let Kn be a sequence of compact sets contained in A for which limn→∞ ν(Kn) = m and Un

a sequence of sets containing A for which UC
n is compact and limn→∞ ν(Un) = m. Because a

finite union of compact sets is compact, one can choose such sequences that satisfy Kn+1 ⊃
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Kn and Un+1 ⊂ Un. Then B1 =
⋃
Kn, B2 =

⋂
Un are Borel sets that satisfy B1 ⊂ A ⊂ B2

and ν(B1) = ν(B2) so A ∈ Lν(Rd).

Lastly, we formally prove Theorem 105.

Proof of Theorem 105. Consider the function w : B × Rd → B × Rd given by w(h,x) =

(h,x− h). Then w is continuous, invertible, and w−1(h,x) = (x,x+ h).

Now let A ∈ U (Rd). Then Lemma 106 implies that B ×Rd is universally measurable in

B × A. Lemma 107 then implies that w−1(B × A) = B × A ⊕ B is universally measurable

as well. Finally, Lemma 106 implies that A⊕B ∈ U (Rd) as well.

A.2 Alternative Characterizations of the W∞

Metric

We start with proving Lemma 3 using a measurable selection theorem.

Theorem 111. Let X, Y be Borel sets and assume that D ⊂ X × Y is also Borel. Let Dx

denote

Dx = {y : (x, y) ∈ D}

and

ProjX(D) : = {x : (x, y) ∈ D}

Let f : D → R be a Borel function mapping D to R and define

f ∗(x) = inf
y∈Dx

f(x, y)

Assume that f ∗(x) > −∞ for all x. Then for any δ > 0, there is a universally measurable
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φ : ProjX(D) → Y for which

f(x, φ(x)) ≤ f(x) + δ

This statement is a consequence of Proposition 7.50 from [10].

We use the following results about universally measurable functions, see Lemma 7.27 of

[10].

Lemma 112. Let g : Rd → R be a universally measurable function and let Q be a Borel

measure. Then there is a Borel measurable function φ for which φ = g Q-a.e.

This result can be extended to Rd-valued functions:

Lemma 113. Let g : Rd → Rd be a universally measurable function and let Q be a Borel

measure. Then there is a Borel measurable function φ for which φ = g Q-a.e.

Proof. Let ei denote the ith basis vector. Then gi := ei · g is a universally measurable

function from Rd to R, so by Lemma 112, there is a Borel function φi for which φi = gi

Q-a.e. Then if we define φ = (φ1, φ2, . . . , φd), this function is equal to g Q-a.e.

Finally, we prove Lemma 3. Due to Lemmas 112 and 113, this lemma heavily relies on

the fact that the domain of our functions is Rd rather than an arbitrary metric space.

Lemma 114. Let Q be a finite positive Borel measure and let f : Rd → R∪ {∞} be a Borel

measurable function. Then

∫
Sϵ(f)dQ = sup

Q′∈B∞
ϵ (Q)

∫
fdQ′ (2.13)

Recall that this paper defines the left-left hand side of (2.13) as the integral of Sϵ(f) with

respect to the completion of Q.
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Proof. To start, let Q′ be a Borel measure satisfying W∞(Q′,Q) ≤ ϵ. Let γ be a coupling

with marginals Q and Q′ supported on ∆ϵ. Then

∫
fdQ′ =

∫
f(x′)dγ(x,x′) =

∫
f(x′)1∥x′−x∥≤ϵdγ(x,x

′)

≤
∫
Sϵ(f)(x)1∥x′−x∥≤ϵdγ(x,x

′) =

∫
Sϵ(f)(x)dγ(x,x

′) =

∫
Sϵ(f)dQ

Therefore, we can conclude that

sup
Q′∈B∞

ϵ (Q)

∫
fdQ′ ≤

∫
Sϵ(f)dQ.

We will show the opposite inequality by applying the measurable selection theorem.

Theorem 111 implies for each δ > 0, one can find a universally measurable function φ : Rd →

Bϵ(x) for which f(φ(x)) + δ ≥ Sϵ(f)(x). By Lemma 113, one can find a Borel measurable

function T for which T = φ Q-a.e.

Let Q′ = Q ◦ T−1. Because T is Borel measurable, Q′ and f ◦ T are Borel. We will now

argue that
∫
fdQ′ + δ ≥

∫
Sϵ(f)dQ. Recall that φ is always measurable with respect to the

completion of Q, and by convention
∫
gdQ means integration with respect to the completion

of Q. Then if we define M = Q(Rd),

∫
fdQ′ =

∫
fdQ◦T−1 =

∫
f(T (x))dQ =

∫
f(φ(x))dQ ≥

∫
Sϵ(f)−δdQ =

∫
Sϵ(f)dQ−δM

Because δ > 0 was arbitrary and Q′ ∈ B∞
ϵ (Q),

∫
Sϵ(f)dQ ≤ sup

Q′∈B∞
ϵ (Q)

∫
fdQ′

It remains to show that W∞(Q,Q′) ≤ ϵ. Define a function G : Rd → Rd × Rd, G(x) =

(x, T (x)) and a coupling γ by γ = G♯Q. Then γ(∆ϵ) = G♯(Q)(∆ϵ) = Q(G−1(∆ϵ)) = 1, so
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supp(γ) ⊆ ∆ϵ.

Next we prove Lemma 4. We begin by presenting Strassen’s theorem, see Corollary 1.28

of [65] for more details

Theorem 115 (Strassen’s Theorem). Let P,Q be positive finite measures with the same

mass and let ϵ ≥ 0. Let Π(P,Q) denote the set couplings of P and Q. Then

inf
π∈Π(P,Q)

π({∥x− y∥ > ϵ) = sup
A closed

Q(A)− P(Aϵ) (A.3)

Strassen’s theorem is usually written with Aϵ in (A.3) replaced by Aϵ] = {x : dist(x, A) ≤

ϵ}—however, for closed sets Aϵ] = Aϵ. Strassen’s theorem together with Urysohn’s lemma

then immediately proves Lemma 4.

Lemma 116 (Urysohn’s Lemma). Let A and B be two closed and disjoint subsets of Rd.

Then there exists a function f : Rd → [0, 1] for which f = 0 on A and f = 1 on B.

See for instance result 4.15 of [22].

Lemma 117. Let P,Q be two finite positive Borel measures with P(Rd) = Q(Rd). Then

W∞(P,Q) = inf
ϵ
{ϵ ≥ 0:

∫
hdQ ≤

∫
Sϵ(h)dP ∀h ∈ Cb(Rd)}

Proof. First, notice that Lemma 3 implies that if Q ∈ B∞
ϵ (P), then

∫
Sϵ(h)dP ≥

∫
hdQ for

all h ∈ Cb(Rd), proving the inequality ≥ in the statement of the lemma.

We will now argue the other inequality: specifically, we will show that

sup
A closed

Q(A)− P(Aϵ) ≤ sup
h∈Cb(Rd)

∫
hdQ−

∫
Sϵ(h)dP (A.4)

Strassen’s theorem will then imply that W∞(P,Q) ≤ ϵ. Let δ be arbitrary and let A be a

closed set that satisfies supA closed Q(A)−P(Aϵ) ≤ Q(A)−P(Aϵ)+δ. Now because A is closed,
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An = A⊕B1/n(0) is a series of open sets decreasing to A and Aϵn = Aϵ⊕B1/n(0) is a sequence

of open sets decreasing to Aϵ. Thus pick n sufficiently large so that P(Aϵn − P(Aϵ) ≤ δ. By

Urysohn’s lemma, one can choose a function h which is 1 on A, 0 on ACn , and between 0 and

1 on An − AC . Then Sϵ(h) is 1 on Aϵ, 0 on (Aϵn)
C and between 0 and 1 on Aϵn − Aϵ. Then∫

hdQ−Q(A) ≥ 0 and thus

(∫
hdQ−

∫
Sϵ(h)dP

)
− (Q(A)− P(Aϵ)) ≥ P(Aϵ)− P(Aϵn) ≥ −δ.

Because δ was arbitrary, (A.4) follows.

A.3 Minimizers of Cϕ(η, ·): Proof of Lemma 25

Lemma 118. Fix a loss function ϕ and let αϕ(η) be as in (2.8). Then αϕ maps η to the

smallest minimizer of Cϕ(η, ·). Furthermore, the function αϕ(η) non-decreasing in η.

Proof. To start, we will show that αϕ(η) as defined in (2.8) is a minimizer of Cϕ(η, ·). Let S

be the set of minimizers of C∗
ϕ(η, ·), which is non-empty due to the lower semi-continuity of

ϕ. Let a = inf S = αϕ(η) and let si ∈ S be a sequence converging to a. Then because ϕ is

lower semi-continuous,

C∗
ϕ(η) = lim inf

i→∞
ηϕ(si) + (1− η)ϕ(−si) ≥ ηϕ(a) + (1− η)ϕ(−a)

Then a is in fact a minimizer of C∗
ϕ(η, ·), so it is the smallest minimizer of C∗

ϕ(η, ·).

We will now show that the function αϕ is non-decreasing.

One can write

135



Cϕ(η2, α) = η2ϕ(α) + (1− η2)ϕ(−α)

= η1ϕ(α) + (1− η1)ϕ(−α) + (η2 − η1)(ϕ(α)− ϕ(−α))

= Cϕ(η1, α) + (η2 − η1)(ϕ(α)− ϕ(−α)) (A.5)

Notice that the function α 7→ ϕ(α) − ϕ(−α) is non-increasing. Then because αϕ(η1)

is the smallest minimizer of Cϕ(η1, α), if α < αϕ(η1), then Cϕ(η1, α) > Cϕ(η1, αϕ(η1)).

Furthermore, ϕ(α) − ϕ(−α) ≥ ϕ(αϕ(η1)) − ϕ(−αϕ(η1)). Therefore, (A.5) implies that

Cϕ(η2, α) > Cϕ(η2, αϕ(η1)), and thus α cannot be a minimizer of Cϕ(η2, ·). Therefore,

αϕ(η2) ≥ αϕ(η1).

A.4 Continuity Properties of R̄ϕ—Proof of

Lemma 12

Recall the function G(η, α) defined by (2.47). With this notation, one can write the C∗
ϕ

transform as h
C∗
ϕ

1 = supη∈[0,1]G(η, h1).

Lemma 119. Let c > 0 and consider α ≥ c. Let a(α) = αC
∗
ϕ, where the C∗

ϕ transform is as

in Lemma 22. Then there is a constant k < 1 for which

a(α) = sup
η∈[0,k]

C∗
ϕ(η)− ηα

1− η
(A.6)

The constants k depends only on c.

Proof. Recall that the function G(η, α) is decreasing in α for fixed η and continuous on [1, 0).

Let k = sup{η : G(η, c) > 0}. As c is strictly positive, one can conclude that limη→1G(η, c) =
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−∞ and as a result k < 1. Because G is decreasing in α, one can conclude that G(η, α) ≤ 0

for all η > k and α ≥ c. However, supη∈[0,1]G(η, α) ≥ 0 because G(0, α) = 0 for all α. Thus

(A.6) holds.

Lemma 120. Let {fα} be a set of L-Lipschitz functions. Then supα fα is also L-Lipschitz.

This statement is proved in Box 1.8 of [55].

Lemma 121. Let Q be any finite measure and assume that g is a non-negative function in

L1(Q). Let δ > 0. Then there is a lower semi-continuous function g̃ for which
∫
|g − g̃| < δ

and g ≥ 0.

See Proposition 7.14 of Folland.

Lemma 122. Let g be a lower semi-continuous function bounded from below. Then there is

a sequence of Lipschitz functions that approaches g from below.

This statement appears in Box 1.5 of [55].

Corollary 123. Let h be an L1(Q) function with h ≥ 0. Then for any δ, there exists a

Lipschitz h̃ for which
∫
|h− h̃|dQ < δ.

Proof. By Lemma 121, one can pick a lower semi-continuous g̃ for which g̃ ≥ 0 and
∫
|h −

g̃|dQ < δ/2. Next, by Lemma 122, one can pick a Lipschitz h̃ for which
∫
|g̃ − h̃|dQ ≤ δ/2.

Thus
∫
|h− h̃|dQ < δ.

Lemma 124. Let K ⊂ Rd be compact, E = Cb(K
ϵ)×Cb(K

ϵ), and P′
0,P′

1 ∈ M+(K
ϵ). Then

inf
(h0,h1)∈Sϕ∩E

∫
h1dP′

1 +

∫
h0dP′

0 = R̄ϕ(P′
0,P′

1) (2.27)

Therefore, R̄ϕ is concave and upper semi-continuous on M+(K
ϵ)×M+(K

ϵ) with respect

to the weak topology on probability measures.
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Proof. Let P′ = P′
0 + P′

1 and η′ = dP′
1/dP′. Then for any (h0, h1) ∈ Sϕ ∩ E,

∫
h1dP′

1 +

∫
h0dP′

0 =

∫
η′h1 + (1− η′)h0dP′ ≥

∫
C∗
ϕ(η

′)dP′ = R̄ϕ(P′
0,P′

1).

We will now focus on showing the other inequality. Define a function f by

f(x) =


αϕ(η

′(x)) x ∈ suppP′

0 x ̸∈ suppP′

Let h1 = ϕ ◦ f , h0 = ϕ ◦ −f . Then h1, h0 satisfy the inequality ηh1 + (1− η)h0 ≥ C∗
ϕ(η) for

all η while on suppP′, η′(x)h1(x) + (1− η′(x))h0(x) = C∗
ϕ(η

′) and therefore

∫
h1dP′

1 +

∫
h0dP′

0 =

∫
η′h1 + (1− η′)h0dP′ =

∫
C∗
ϕ(η

′)dP′.

However, (h0, h1) ̸∈ E. We will now approximate h0, h1 by bounded continuous functions

contained in Sϕ. Let δ > 0 be arbitrary. Pick a constant c > 0 for which
∫
cdP′ < δ and set

h̃1 = max(h1, c). The pair (h0, h̃1) are feasible pair for the set Sϕ, and thus

C∗
ϕ(η)− ηh̃1 − (1− η)h0 ≤ 0 (A.7)

Furthermore, ∫
h̃1dP′

1 +

∫
h0dP′

0 < R̄ϕ(P′
0,P′

1) + δ. (A.8)

Let k be the constant described by Lemma 119 corresponding to c. Now by Corollary 123,

there is a Lipschitz function g for which
∫
|h1−g|dP′ < min((1−k)/k, 1)δ. Let ĥ1 = max(g, c).

Then Lemma 120 implies that ĥ1 has the same Lipschitz constant as g, and the fact that
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h̃1 ≥ c implies that

∫
|h̃1 − ĥ1|dP′ ≤

∫
|h̃1 − g|dP′ < min

(
1− k

k
, 1

)
δ (A.9)

Now let ĥ0 = ĥ
C∗
ϕ

1 . By Lemma 119, the supremum in the C∗
ϕ transform for computing ĥ0

can be taken over [0, k]. Therefore, if L is the Lipschitz constant of ĥ1, Lemma 120 implies

that the Lipschitz constant of ĥ0 is at most kL/(1− k). Furthermore, ĥ0, ĥ1 are bounded on

Kϵ because Lipschitz functions are bounded over compact sets. Thus (ĥ0, ĥ1) is in Sϕ ∩ E.

Next, we will show that
∫
ĥ0 is close to

∫
h0.

∫
ĥ0 − h0dP′

0 =

∫
sup
[0,k]

C∗
ϕ(η)− ηĥ1

1− η
− h0dP′

0 =∫
sup
[0,k]

C∗
ϕ(η)− ηĥ1 − (1− η)h0

1− η
dP′

0 =∫
sup
[0,k]

(
C∗
ϕ(η)− ηh̃1 − (1− η)h0

1− η
+

η

1− η
(h̃1 − ĥ1)

)
dP′

0 ≤∫
sup
[0,k]

C∗
ϕ(η)− ηh̃1 − (1− η)h0

1− η
+ sup

[0,k]

η

1− η
(h̃1 − ĥ1)dP′

0 ≤∫
sup
[0,k]

η

1− η
(h̃1 − ĥ1)dP′

0 = (Equation A.7)

k

1− k

∫
h̃1 − ĥ1dP′

0 ≤ δ (Equation A.9)

Therefore, by (A.8), (A.9), and the computation above,

∫
ĥ1dP′

1 +

∫
ĥ0dP′

0 ≤ R̄ϕ(P′
0,P′

1) + 3δ.

As δ > 0 is arbitrary, this inequality implies (2.27). Because Kϵ is compact, the upper semi-

continuity and concavity of R̄ϕ then follows from (2.27) together with the Reisz representation

theorem.
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A.5 Duality for Distributions with Arbitrary

Support—Proof of Lemma 14

We begin with the simple observation that weak duality holds for measures supported on Rd.

This argument is essentially swapping the order of an infimum and a supremum as presented

in Section 2.4.1.

Lemma 125 (Weak Duality). Let ϕ be a non-increasing and lower semi-continuous loss

function. Let Sϕ be the set of pairs of functions defined in (2.25) for K = Rd.

Then

inf
(h0,h1)∈Sϕ

Θ(h0, h1) ≥ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)

Proof. By Lemma 3,

inf
(h0,h1)∈Sϕ

∫
Sϵ(h0)dP0 +

∫
Sϵ(h1)dP1 = inf

(h0,h1)∈Sϕ
sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

∫
h0dP′

0 +

∫
h1dP′

1.

Thus by swapping the inf and the sup,

inf
(h0,h1)∈Sϕ

∫
Sϵ(h0)dP0 +

∫
Sϵ(h1)dP1 ≥ sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
(h0,h1)∈Sϕ

∫
h0dP′

0 +

∫
h1dP′

1

= sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
(h0,h1)∈Sϕ

∫
dP′

1

d(P′
0 + P′

1)
h1 +

(
1− dP′

1

d(P′
0 + P′

1)

)
h0d(P′

0 + P′
1)

≥ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)

The main strategy in this section is approximating measures with unbounded support by
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measures with bounded support. To this end, we define the restriction of a measure P to a

set K by P|K(A) = P(K ∩ A).

The Portmaneau theorem then allows us to draw some conclusions about weakly conver-

gent sequences of measures.

Theorem 126 (Portmanteau Theorem). The following are equivalent:

1) The sequence Qn ∈ M+(Rd) converges weakly to Q

2) For all closed sets C, lim supn→∞Qn(C) ≤ Q(C) and limn→∞Qn(Rd) = Q(Rd)

3) For all open sets U , lim infn→∞ Qn(U) ≥ Q(U) and limn→∞ Qn(Rd) = Q(Rd)

See Theorem 8.2.3 of [15]. This result allows us to draw conclusions about restrictions of

weakly convergent sequences.

Lemma 127. Let Qn,Q ∈ M+(Rd) and assume that Qn converges weakly to Q. Let K be

a compact set with Q(∂K) = 0. Then Qn|K converges weakly to Q|K.

Proof. We will verify 2) of Theorem 126 for the measures Qn|K , Q.

First, because Q(K) = Q(intK), Theorem 126 implies that

lim sup
n→∞

Qn(K) ≤ Q(K) = Q(intK) ≤ lim inf
n→∞

Qn(intK) ≤ lim inf
n→∞

Qn(K).

Therefore, limn→∞Qn|K(Rd) = limn→∞ Qn(K) = Q(K). Next, for any closed set C, the set

C ∩K is also closed so the fact that Qn weakly converges to Q implies that

lim sup
n→∞

Qn|K(C) = lim sup
n→∞

Qn(K ∩ C) ≤ Q(K ∩ C) = Q|K(C).

Next, Prokhorov’s theorem allows us to identify weakly convergent subsequences.
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Theorem 128. Let Qn be a sequence of measures for which supnQn(Rd) <∞ and for all δ,

there exists a compact K for which Qn(KC) < δ for all n. Then Qn has a weakly convergent

subsequence.

See Theorem 8.6.2 of [15]. These results imply that R̄ϕ is upper semi-continuous on

M+(Rd)×M+(Rd).

Lemma 129. The functional R̄ϕ is upper semi-continuous with respect to the weak topology

on probability measures (in duality with C0(Rd)).

Notice that Lemma 12 implies that R̄ϕ is upper semi-continuous on the space M+(K
ϵ)×

M+(K
ϵ) for a compact set K. However, on Rd, weak convergence of measures is defined

with respect to the dual of C0(Rd), the set of continuous functions vanishing at ∞. This set

is strictly smaller than Cb(Rd), and thus the relation (2.27) would not immediately imply

the the upper semi-continuity of Rϵ
ϕ.

Proof. Let Qn
0 ,Qn

1 be sequences of measures converging to Q0,Q1 respectively. Set Q =

Q0 +Q1.

Define a function F (R) = Q(BR(0)
C
). Then because this function is non-increasing, it

has finitely many points of discontinuity.

Let δ > 0 be arbitrary and choose R large enough so that F (R) < δ/C∗
ϕ(1/2) and F is

continuous at R. Then notice that P(∂BR(0)) = 0 and thus one can apply Lemma 127 with

the set BR(0).

Now let ν0, ν1 be arbitrary measures. Consider νRi defined by νRi = νi|BR(0). Set ν =

ν0 + ν1, η = dν1/dν, ν
R = νR0 + νR1 , η

R = dνR1 /dν
R. Then on BR(0), η

R = η a.e. Thus

|R̄ϕ(ν
R
0 , ν

R
1 )− R̄ϕ(ν0, ν1)| =

∣∣∣∣∫ C∗
ϕ(η)1BR(0)dν −

∫
C∗
ϕ(η)dν

∣∣∣∣ ≤ C∗
ϕ

(
1

2

)
ν(BR(0)C) (A.10)

If we define Qi,R,Qn
i,R via Qi,R = Qi|BR(0), Q

n
i,R = Qn

i = Qn
i |BR(0), Lemma 127 implies that

Qn
i,R converges weakly to Qi,R and limn→∞ Qn(BR(0)

C
) = Q(BR(0)

C) < δ. Therefore, for
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sufficiently large n, Qn(BR(0)
C
) < 2δ/C∗

ϕ(1/2). By Lemma 12 and (A.10),

lim sup
n→∞

R̄ϕ(Qn
0 ,Qn

1 ) ≤ lim sup
n→∞

R̄ϕ(Qn
0,R,Qn

1,R) + 2δ ≤ R̄ϕ(Q0,R,Q1,R) + 2δ ≤ R̄ϕ(Q0,Q1) + 3δ

Because δ was arbitrary, the result follows.

Next we consider an approximation of P0, P1 by compactly supported measures.

Lemma 130. Let P0,P1 be finite measures. Define Pni = Pi|Bn(0) for n ∈ N. Then Pn0 ,Pn1

converge weakly to P0, P1 respectively. Furthermore, there are measures P∗
0 ∈ B∞

ϵ (P0),P∗
1 ∈

B∞
ϵ (P1) for which

lim sup
n→∞

sup
P′
1∈B∞

ϵ (Pn1 )
P′
0∈B∞

ϵ (P0)n

R̄ϕ(P′
0,P′

1) ≤ R̄ϕ(P∗
0,P∗

1) (A.11)

Proof. Set P = P0 + P1, Pn = Pn0 + Pn1 . Notice that 2) of Theorem 126 implies that Pni

converges weakly to Pi. Let P∗,n
0 ,P∗,n

1 be maximizers of R̄ϕ over B∞
ϵ (Pn0 ) × B∞

ϵ (Pn1 ). Next,

by Strassen’s theorem (Theorem 115), Pni (Br(0)) ≤ Pn,∗i (Br+ϵ(0)) and thus Pi(Br(0)
C
) ≥

Pni (Br(0)
C
) ≥ Pn,∗i (Br+ϵ(0)). Therefore, one can apply Prokhorov’s theorem (Thereom 128)

to conclude that Pn,∗0 , Pn,∗1 have subsequences Pnk,∗0 , Pnk,∗1 that converge to measures P∗
0,P∗

1

respectively. The upper semi-continuity of Rϕ (Lemma 129) then implies that P∗
0,P∗

1 satisfy

(A.11).

It remains to show that P∗
i ∈ B∞

ϵ (Pi). We will apply Lemma 4. Because Pnk,∗i ∈ B∞
ϵ (Pnki )

for all nk, Lemma 4 implies that for every f ∈ Cb(Rd),
∫
Sϵ(f)dPnki ≥

∫
fdP∗,nk

i . Because

Pnki converges weakly to Pi and P∗,nk
i converges weakly to P∗

i , one can take the limit k → ∞

to conclude
∫
Sϵ(f)dPi ≥

∫
fdP∗

i for all f ∈ Cb(Rd). Lemma 4 then implies P∗
i ∈ B∞

ϵ (Pi).

Lemma 131. Let ϕ be a non-increasing, lower semi-continuous loss function and let P0,P1
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be finite Borel measures supported on Rd. Let Sϕ be as in (2.25). Then

inf
(h0,h1)∈Sϕ

Θ(h0, h1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1)

Furthermore, there exist P∗
0,P∗

1 which attain the supremum.

Proof. Let Pn0 , Pn1 , P∗
0,P∗

1 be the the measures described in Lemma 130. Notice that because

Pn0 , Pn1 are compactly supported, Lemma 13 applies. Define

Θn(h0, h1) =

∫
Sϵ(h1)dPn1 +

∫
Sϵ(h0)dPn0 .

Thus Lemmas 13 and Lemma 130 imply that

lim sup
n→∞

inf
(h0,h1)∈Sϕ

Θn(h0, h1) = lim sup
n→∞

sup
P′
0∈B∞

ϵ (Pn0 )
P′
1∈B∞

ϵ (Pn1 )

R̄ϕ(P′
0,P′

1) ≤ R̄ϕ(P∗
0,P∗

1) ≤ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1).

(A.12)

We will show

inf
(h0,h1)∈Sϕ

Θ(h0, h1) ≤ lim sup
n→∞

inf
(h0,h1)∈Sϕ

Θn(h0, h1). (A.13)

Equations A.12 and A.13 imply that

inf
(h0,h1)∈Sϕ

Θ(h0, h1) ≤ R̄ϕ(P∗
0,P∗

1) ≤ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕ(P′
0,P′

1). (A.14)

This relation together with weak duality (Lemma 125) imply that the inequalities in

(A.14) are actually equalities. Therefore strong duality holds and P∗
0,P∗

1 maximizes the dual.

Next, we prove the inequality in (A.13). Let δ > 0 be arbitrary and choose an n ∈ N for

which n > 2ϵ and

P1(Bn−2ϵ(0)
C
) + P0(Bn−2ϵ(0)

C
) ≤ δ (A.15)
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Let (hn0 , h
n
1 ) ∈ Sϕ be functions for which

Θn(hn0 , h
n
1 ) ≤ inf

(h0,h1)∈Sϕ
Θn(h0, h1) + δ (A.16)

Define

h̃n0 =


hn0 x ∈ Bn−ϵ(0)

C∗
ϕ

(
1
2

)
x ̸∈ Bn−ϵ(0)

h̃n1 =


hn1 x ∈ Bn−ϵ(0)

C∗
ϕ

(
1
2

)
x ̸∈ Bn−ϵ(0)

Because ηhn0 + (1 − η)hn1 ≥ C∗
ϕ(η) ∀η ∈ [0, 1] on Bn−ϵ(0) and (C∗

ϕ(1/2), C
∗
ϕ(1/2)) ∈ Sϕ, one

can conclude that (h̃n0 , h̃
n
1 ) ∈ Sϕ.

Now because n > 2ϵ, the regions Bn−ϵ(0), Bn−2ϵ(0) are non-empty. One can bound Sϵ(h̃i)

in terms of Sϵ(hi) and C
∗
ϕ(1/2):

Sϵ(h̃i)(x) = Sϵ(hi)(x) for x ∈ Bn−2ϵ(0)

Sϵ(h̃i)(x) ≤ max(Sϵ(hi)(x), C
∗
ϕ(1/2)) ≤ Sϵ(hi) + C∗

ϕ(1/2) for x ∈ Bn(0)

Sϵ(h̃i) = C∗
ϕ(1/2) for x ∈ Bn(0)

C

Now for each i, these bounds imply that

∫
Sϵ(h̃

n
i )dPi ≤

∫
Bn−2ϵ(0)

Sϵ(h
n
i )dPi

+

∫
Bn(0)−Bn−2ϵ(0)

Sϵ(h
n
i ) + C∗

ϕ

(
1

2

)
dPi +

∫
Bn(0)

C
C∗
ϕ

(
1

2

)
dPi

=

∫
Bn(0)

Sϵ(h
n
i )dPi +

∫
Bn−2ϵ(0)

C
C∗
ϕ

(
1

2

)
dPi
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Then, applying this bound for each i,

Θ(h̃n0 , h̃
n
1 ) =

∫
Sϵ(h̃

n
1 )dP1 +

∫
Sϵ(h̃

n
0 )dP0

≤
(∫

Bn(0)

Sϵ(h
n
1 )dP1 +

∫
Bn(0)

Sϵ(h
n
0 )dP0

)
+

(∫
Bn−2ϵ(0)

C
C∗
ϕ

(
1

2

)
dP1 +

∫
Bn−2ϵ(0)

C
C∗
ϕ

(
1

2

)
dP0

)
= Θn(hn0 , h

n
1 ) + C∗

ϕ

(
1

2

)(
P0(Bn−2ϵ(0)

C
) + P1(Bn−2ϵ(0)

C
)
)

≤
(

inf
(h0,h1)∈Sϕ

Θn(h0, h1) + δ

)
+ δC∗

ϕ

(
1

2

)

The last inequality follows from Equations A.15 and A.16. Because δ arbitrary, (A.13) holds.

A.6 Complementary Slackness

Lemma 132. Assume that P0,P1 are compactly supported. The functions h∗0, h
∗
1 minimize

Θ over Sϕ and (P∗
0,P∗

1) maximize R̄ϕ over B∞
ϵ (P0)× B∞

ϵ (P1) iff the following hold:

1) ∫
h∗1dP∗

1 =

∫
Sϵ(h

∗
1)dP1 and

∫
h∗0dP∗

0 =

∫
Sϵ(h

∗
0)dP0 (2.30)

2) If we define P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗, then

η∗(x)h∗1(x) + (1− η∗(x))h∗0(x) = C∗
ϕ(η

∗(x)) P∗-a.e. (2.31)

Notice that the forward direction of this lemma is actually a consequence of the approxi-

mate complementary slackness result in Lemma 16, but we provide a separate self-contained

proof below.
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Proof. First assume that (P∗
0,P∗

1) maximizes R̄ϕ over B∞
ϵ (P0)×B∞

ϵ (P1) and (h∗0, h
∗
1) minimizes

Θ over Sϕ. Because P∗
i ∈ B∞

ϵ (Pi) and (h∗0, h
∗
1) ∈ Sϕ, by Lemma 3

Θ(h∗0, h
∗
1) =

∫
Sϵ(h

∗
1)dP1 +

∫
Sϵ(h

∗
0)dP0 ≥

∫
h∗1dP∗

1 +

∫
h∗0dP∗

0 (A.17)

=

∫
η∗h∗1 + (1− η∗)h∗0dP∗ ≥

∫
C∗
ϕ(η

∗)dP∗ = R̄ϕ(P∗
0,P∗

1) (A.18)

By Lemma 14, both the first expression of (A.17) and the last expression of (A.18) are equal.

Thus all the inequalities above must be equalities which implies (2.31). Next, because (A.18)

implies that ∫
Sϵ(h

∗
1)dP1 +

∫
Sϵ(h

∗
0)dP0 =

∫
h∗1dP∗

1 +

∫
h∗0dP∗

0

and Lemma 3 implies that
∫
Sϵ(h

∗
0)dP0 ≥

∫
h∗0dP∗

0 and
∫
Sϵ(h

∗
1)dP1 ≥

∫
h∗1dP∗

1 we can con-

clude (2.30).

We will now show the opposite implication. Assume that h∗0, h
∗
1,P∗

0,P∗
1 satisfy (2.30) and

(2.31). Then

Θ(h∗0, h
∗
1) =

∫
Sϵ(h

∗
1)dP1 +

∫
Sϵ(h

∗
0)dP0

=

∫
h∗1dP∗

1 +

∫
h∗0dP∗

0 (Equation 2.30)

=

∫
η∗h∗1 + (1− η∗)h∗0dP∗ =

∫
C∗
ϕ(η

∗)dP∗ (Equation 2.31)

= R̄ϕ(P∗
0,P∗

1)

However, Lemma 14 implies that Θ(h0, h1) ≥ R̄ϕ(P′
0,P′

1) for any h0, h1,P′
0,P′

1. Therefore,

h∗0, h
∗
1 must be optimal for Θ and P∗

0,P∗
1 must be optimal for R̄ϕ.

Notably, a similar strategy shows that if (hn0 , h
n
1 ) ∈ Sϕ is a sequence that satisfies 1) and

2) of Lemma 16, then (hn0 , h
n
1 ) must be a minimizing sequence for Θ.
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A.7 Technical Lemmas from Section 2.6

A.7.1 Proof of Lemma 17

Lemma 133. Let ψ(α) = e−α. Then C∗
ψ(η) = 2

√
η(1− η) and αψ(η) = 1/2 log(η/1 − η)

is the unique minimizer of Cψ(η, ·), with αψ(0), αψ(1) interpreted as −∞, +∞ respectively.

Furthermore, ∂C∗
ψ(η) is the singleton ∂C∗

ψ(η) = {ψ(αψ(η))− ψ(−αψ(η))}.

Proof. First, one can verify that−∞minimizes Cψ(0, α) and∞minimizes Cψ(1, α), and that

C∗
ψ(0) = C∗

ψ(1) = 0. To find minimizers of Cψ(η, α) for η ∈ (0, 1), we solve ∂αCψ(η, α) =

−ηe−α + (1 − η)eα = 0, resulting in αψ(η) = 1/2 log(η/1 − η). This formula allows for

computation of C∗
ψ(η) via C

∗
ψ(η) = Cψ(η, αψ(η)).

Next, by definition

ηψ(αψ(η)) + (1− η)(−ψ(αψ(η))) = C∗
ψ(η) and sψ(αψ(η)) + (1− s)(−ψ(αψ(η))) ≥ C∗

ψ(s)

for all s ∈ [0, 1]. Therefore, ψ(αψ(η))− ψ(−αψ(η)) is a supergradient of C∗
ψ(η) at η.

The function C∗
ψ is differentiable on (0, 1), and thus the superdifferential is unique on this

set. To show that ∂C∗
ψ(0), ∂C

∗
ψ(1) are singletons, it suffices to observe that

lim
η→0

d

dη
C∗
ψ(η) = +∞, lim

η→1

d

dη
C∗
ψ(η) = −∞.

A.7.2 Proof of Lemma 18

Lemma 134. Let (an, bn) be a sequence for which an, bn ≥ 0 and

ηan + (1− η)bn ≥ C∗
ψ(η) for all η ∈ [0, 1] (2.39)
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and

lim
n→∞

η0an + (1− η0)bn = C∗
ψ(η0) (2.40)

for some η0. Then limn→∞ an = ψ(αψ(η0)) and limn→∞ bn = ψ(−αψ(η0)).

Proof. Recall that on the extended real number line, every subsequence has a convergent

subsequence. We will show that limn→∞ an = ψ(αψ(η0)) and limn→∞ bn = ψ(−αψ(η0))

by proving that every convergent subsequence of {an} converges to ψ(αψ(η0)) and every

convergent subsequence of bn converges to ψ(αψ(η0)).

Let ank , bnk be a convergent subsequences of {an}, {bn} respectively. (Again, this con-

vergence is in R.) Set a = limk→∞ ank , b = limk→∞ bnk .

Then (2.39) (2.40) imply that

ηa+ (1− η)b ≥ C∗
ψ(η) for all η ∈ [0, 1]

η0a+ (1− η0)b = C∗
ψ(η0) (A.19)

These equations imply that a− b ∈ ∂C∗
ψ(η0) and thus

a− b = ψ(αψ(η0))− ψ(−αψ(η0)) (A.20)

while (A.19) is equivalent to

η0a+ (1− η0)b = η0ψ(αψ(η0)) + (1− η0)ψ(−αψ(η0)) (A.21)

The equations (A.20) and (A.21) comprise a system of equations in two variables with a

unique solution for a and b.
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A.7.3 Proof of Lemma 20

Lastly, we prove Lemma 20.

Lemma 135. Let hn be any sequence of functions. Then the sequence hn satisfies

lim inf
n→∞

Sϵ(hn) ≥ Sϵ(lim inf
n→∞

hn) (2.43)

and

lim sup
n→∞

Sϵ(hn) ≥ Sϵ(lim sup
n→∞

hn) (2.44)

Proof. We start by showing (2.43).

lim inf
n→∞

Sϵ(hn)(x) = lim inf
n→∞

sup
∥h∥≤ϵ

hn(x+ h) = sup
N

inf
n≥N

sup
∥h∥≤ϵ

hn(x+ h)

≥ sup
∥h∥≤ϵ

sup
N

inf
n≥N

hn(x+ h) = sup
∥h∥≤ϵ

lim inf
n→∞

hn(x+ h) = Sϵ(lim inf
n→∞

hn)(x)

Equation 2.44 can then be proved by the same argument:

lim sup
n→∞

Sϵ(hn)(x) = lim sup
n→∞

sup
∥h∥≤ϵ

hn(x+ h) = inf
N

sup
n≥N

sup
∥h∥≤ϵ

hn(x+ h)

≥ sup
∥h∥≤ϵ

inf
N

sup
n≥N

hn(x+ h) = sup
∥h∥≤ϵ

lim sup
n→∞

hn(x+ h) = Sϵ(lim sup
n→∞

hn)(x)
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B — Deferred Proofs from

Chapter 3

B.1 Proof of Lemma 27

First, the Sϵ operation satisfies a subadditivity property:

Lemma 136. Let S1 and S2 be two subsets of Rd. Then

Sϵ(1S1) + Sϵ(1S2) ≥ Sϵ(1S1∩S2) + Sϵ(1S1∪S2) (B.1)

Proof. First, notice that

Sϵ(1S1)(x) + Sϵ(1S2)(x) =


0 if x ̸∈ Sϵ1 and x ̸∈ Sϵ2

1 if x ∈ Sϵ1△Sϵ2

2 if x ∈ Sϵ1 ∩ Sϵ2

= 1Sϵ1∩Sϵ2(x) + 1Sϵ1∪Sϵ2(x)

(B.2)

Next, one can always swap the order of two maximums but a min-max is always larger
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than a max-min. Therefore:

Sϵ(1S1∩S2) + Sϵ(1S1∪S2) = Sϵ(min(1S1 ,1S2)) + Sϵ(max(1S1 ,1S2))

≤ min(Sϵ(1S1), Sϵ(1S2)) + max(Sϵ(1S1), Sϵ(1S2)) = 1Sϵ1∩Sϵ2 + 1Sϵ1∪Sϵ2

(B.3)

Comparing Equation (B.2) and Equation (B.3) results in Equation (B.1).

Therefore, the adversarial classification risk is sub-additive.

Corollary 137. Let S1 and S2 be any two sets. Then

Rϵ(S1 ∩ S2) +Rϵ(S1 ∪ S2) ≤ Rϵ(S1) +Rϵ(S2)

This result then directly implies Lemma 27:

Proof of Lemma 27. Let A1 and A2 be two adversarial Bayes classifiers, and let Rϵ
∗ be the

minimal adversarial Bayes risk. Then Corollary 137 implies that

2Rϵ
∗ ≥ Rϵ(A1 ∪ A2) +Rϵ(A1 ∩ A2)

and hence A1 ∩ A2 and A1 ∪ A2 must be adversarial Bayes classifiers as well.

B.2 Complementary Slackness– Proof of

Theorem 30

The complementary slackness relations of Theorem 30 are a consequence of the minimax

relation of Theorem 29 and properties of the W∞ metric.

Integrating the maximum of an indicator function over an ϵ-ball is intimately linked to

maximizing an integral over a W∞ ball of measures:
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Lemma 138. Let Q be a positive measure. Then for any Borel set A

∫
Sϵ(1A)dQ ≥ sup

Q′∈B∞
ϵ (Q)

∫
gdQ′

Lemma 5.1 of [52] and Lemma 3 of [25] proved slightly different versions of this result,

so we include a proof here for completeness.

Proof. Let Q′ be any measure with W∞(Q,Q′) ≤ ϵ and let γ be any coupling between for

which

ess sup
(x,y)∼γ

∥x− y∥ = W∞(Q,Q′).

Such a coupling exists by Theorem 2.6 of [33]. Then Sϵ(1A)(x) ≥ 1A(y) γ-a.e. Thus

∫
Sϵ(1A)(x)dQ(x) =

∫
Sϵ(1A)(x)dγ(x,y) ≥

∫
1Adγ(x,y) =

∫
1A(y)dQ′(y)

Now taking a supremum over all Q′ ∈ B∞
ϵ (Q) concludes the proof.

One can prove Theorem 30 with this result.

Proof of Theorem 30.

Forward Direction:

Let A be a minimizer of Rϵ and assume that P∗
0 ∈ B∞

ϵ (P0), P∗
1 ∈ B∞

ϵ (P1) maximize R̄.

Then:

Rϵ(A) =

∫
Sϵ(1AC )dP1 +

∫
Sϵ(1A)dP0 ≥

∫
1ACdP∗

1 +

∫
1AdP∗

0 (B.4)

=

∫
η∗1ACdP1 +

∫
(1− η∗)1AdP∗

0 ≥
∫
C∗(η∗)dP∗ = R̄(P∗

0,P∗
1) (B.5)

The first inequality follows from Lemma 138 while the second inequality follows from the

definition of C∗ in Equation (3.3). By Theorem 29, the first expression of Equation (B.4)
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and the last expression of Equation (B.5) are equal. Thus all the inequalities above must in

fact be equalities. Thus the fact that the inequality in Equation (B.5) is an equality implies

Equation (3.12). Lemma 138 and the fact that the inequality in Equation (B.4) must be an

equality implies Equation (3.11).

Backward Direction:

Let P∗
0,P∗

1 be measures satisfying W∞(P∗
0,P0) ≤ ϵ, W∞(P∗

1,P1) ≤ ϵ, and let A be a Borel

set. Assume that A, P∗
0, and P∗

1 satisfy Equation (3.11) and Equation (3.12). We will argue

that A is must be a minimizer of Rϵ and P∗
0,P∗

1 must maximize R̄.

First, notice that Theorem 29 implies that Rϵ(A′) ≥ R̄(P′
0,P′

1) for any Borel A′ and

P′
0 ∈ B∞

ϵ (P0),P′
1 ∈ B∞

ϵ (P1). Thus if one can show

Rϵ(A) = R̄(P∗
0,P∗

1), (B.6)

then A must minimize Rϵ because for any other A′,

Rϵ(A′) ≥ R̄(P∗
0,P∗

1) = Rϵ(A).

Similarly, one could conclude that P∗
0,P∗

1 maximize R̄ because for any other P′
0 ∈ B∞

ϵ (P0)

and P′
1 ∈ B∞

ϵ (P1),

R̄(P′
0,P′

1) ≤ Rϵ(A) = R̄(P∗
0,P∗

1).

Hence it remains to show Equation (B.6). Applying Equation (3.11) followed by Equa-

tion (3.12), one can conclude that

Rϵ(A) =

∫
Sϵ(1

C
A)dP1 +

∫
Sϵ(1A)dP0 =

∫
1ACdP∗

1 +

∫
1AdP∗

0 Equation (3.11)

=

∫
η∗1AC + (1− η∗)1AdP∗ =

∫
C∗(η∗)dP∗ = R̄(P∗

0,P∗
1) Equation (3.12)

154



B.3 Proof of Proposition 51 and Lemma 52

The proof of Proposition 51 relies on Lemma 52.

B.3.1 Proof of Lemma 52

The ϵ operation on sets interacts particularly nicely with Lebesgue measure.

Lemma 139. For any set A and ϵ > 0, ∂Aϵ has Lebesgue measure zero.

This result is standard in geometric measure theory, see for instance Lemma 4 in [2] for

a proof. Next, the closure and ϵ operations commute:

Lemma 140. Let A be any set in Rd. Then Aϵ = A
ϵ
.

Proof. We show the two inclusions Aϵ ⊂ A
ϵ
and Aϵ ⊃ A

ϵ
separately.

Showing Aϵ ⊂ A
ϵ
: First, because the direct sum of a closed set and a compact set must

be closed, A
ϵ
is a closed set that contains Aϵ. Therefore, because Aϵ is the smallest closed

set containing Aϵ, the set Aϵ must be contained in A
ϵ
.

Showing Aϵ ⊃ A
ϵ
: Let x ∈ A

ϵ
, we will show that x ∈ Aϵ. If x ∈ Aϵ, then x = a+ h for

some a ∈ A and h ∈ Bϵ(0). Let ai be a sequence of points contained in A that converges to

a. Then ai + h ∈ Aϵ, and ai + h converges to a+ h. Therefore, a+ h ∈ Aϵ.

Next, this result implies that the sets (intA)ϵ, Aϵ and A
ϵ
all have equal P0 measure while

((intA)C)ϵ, (AC)ϵ, and (A
C
)ϵ have equal P1-measure.

Lemma 141. If A is any adversarial Bayes classifier and ϵ > 0, then P0(A
ϵ) = P0(A

ϵ
) =

P0((intA)
ϵ) and P1((A

C)ϵ) = P1(((intA)
C)ϵ) = P1((A

C
)ϵ).
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Proof. First, Lemmas 139 and 140 imply that

P0(A
ϵ) = P0(Aϵ) = P0(A

ϵ
) (B.7)

Furthermore, P1((A
C)ϵ) ≥ P1((A

C
)ϵ) and thus Rϵ(A) ≥ Rϵ(A). Consequently, A must be an

adversarial Bayes classifier and

P1((A
C)ϵ) = P1((A

C
)ϵ) (B.8)

A similar line of reasoning shows that

P1((AC)ϵ) = P1((AC)
ϵ
) = P1((intA

C)ϵ) (B.9)

and thus

P0(A
ϵ) = P0((intA)

ϵ) (B.10)

Equations (B.7) to (B.10) imply the desired result.

Finally, Lemma 141 implies that intA, A and A are all equivalent up to degeneracy.

Proof of Lemma 52. Lemma 141 implies that if E is any measurable set with intA ⊂ E ⊂ A,

then P0(E
ϵ) = P0(A

ϵ) and P1((E
C)ϵ) = P1((A

C)ϵ). Therefore, E must be an adversarial

Bayes classifier.

B.3.2 Proof of Proposition 51

The following lemma show that Item 2) implies Item 1).
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Lemma 142. Let A1 and A2 be adversarial Bayes classifiers for which either Sϵ(1A1) =

Sϵ(1A2) P0-a.e. or Sϵ(1AC1 ) = Sϵ(1AC2 )-P1-a.e. Then

Sϵ(1A1) = Sϵ(1A2) = Sϵ(1A1∩A2) = Sϵ(1A1∪A2) P0-a.e. (B.11)

and

Sϵ(1AC1 ) = Sϵ(1AC2 ) = Sϵ(1(A1∩A2)C ) = Sϵ(1(A1∪A2)C ) P1-a.e. (B.12)

See Appendix B.3.2.1 for a proof. As a result:

Corollary 143. Let A1 and A2 be two adversarial Bayes classifiers. Then Sϵ(1A1) = Sϵ(1A2)

P0-a.e. iff Sϵ(1AC1 ) = Sϵ(1AC2 ) P1-a.e.

Furthermore, the last equality in Equation (B.11) and Equation (B.12) implies that A1

and A2 are equivalent up to degeneracy.

This result suffices to prove the equivalence between Item 2) and Item 3), even when P

is not absolutely continuous with respect to Lebesgue measure.

Lemma 144. Let A1 and A2 be two adversarial Bayes classifiers for ϵ > 0, and let (P∗
0,P∗

1)

be a maximizer of R̄. Define P∗ = P∗
0 + P∗

1.

The following are equivalent:

2) Either Sϵ(1A1) = Sϵ(1A2)-P0-a.e. or Sϵ(1AC2 ) = Sϵ(1AC1 )-P1-a.e.

3) P∗(A2△A1) = 0

Proof. Assume that A1 and A2 are both adversarial Bayes classifiers. Lemma 27 then implies

that A1 ∪A2, A1 ∩A2 are both adversarial Bayes classifiers. Equation (3.11) of Theorem 30

implies that

∫
Sϵ(1A1∪A2)dP0 =

∫
1A1∪A2dP∗

0 =

∫
1A1∩A2dP∗

0 + P∗
0(A1△A2)

=

∫
Sϵ(1A1∩A2)dP0 + P∗

0(A1△A2)
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Because Sϵ(1A1∩A2) ≤ Sϵ(1A1∪A2), P∗
0(A1△A2) = 0 is equivalent to Sϵ(1A1∩A2) = Sϵ(1A1∪A2)

P0-a.e. Next, Sϵ(1A1∩A2) = Sϵ(1A1∪A2) P0-a.e. is equivalent to Sϵ(1A1) = Sϵ(1A2) P0-a.e. by

Lemma 142. Therefore, Corollary 143 implies that P∗
0(A1△A2) = 0 is equivalent to Item 2).

The same argument implies that P∗
1(A1△A2) = 0 is equivalent to Item 2). Lastly,

P∗(A1△A2) = 0 is equivalent to P∗
0(A1△A2) = 0 and P∗

1(A1△A2) = 0.

Next, the equivalence of Item 1) with Item 3) in Proposition 51 is a consequence of

Lemma 141 and an additional result on the ϵ operation.

Lemma 145. Let U be an open set and let Q be the set of rational numbers. Further assume

ϵ > 0. Then U ϵ = (U ∩Qd)ϵ = (U ∩ (Qd)C)ϵ.

See Appendix B.3.2.2 for a proof.

Proof of Proposition 51. Lemma 144 states that Item 3) implies Item 2). It remains to show

Item 2) implies Item 1) and Item 1) implies Item 3).

Item 2) ⇒ Item 1): Assume that Item 2) holds; then Corollary 143 implies that both

Sϵ(1A1) = Sϵ(1A2) P0-a.e. and Sϵ(1AC1 ) = Sϵ(1AC2 ) P1-a.e. Lemma 142 implies than any set

A with A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2 satisfies Sϵ(1A1) = Sϵ(1A) P0-a.e. and Sϵ(1AC1 ) = Sϵ(1AC )

P1-a.e. Therefore R
ϵ(A) = Rϵ(A1) so A is also an adversarial Bayes classifier.

Item 1) ⇒ Item 3): Assume that for all A satisfying A1 ∩ A2 ⊂ A ⊂ A1 ∪ A2, the set

A is an adversarial Bayes classifier. Define A3 = A1 ∩ A2, A4 = A1 ∪ A2, and D = A1△A2.

As A3 ⊔D ⊔ AC4 = Rd, the boundary ∂D is included in ∂A3 ∪ ∂A4.

We split D into four disjoint sets, D1 = intD∩Qd, D2 = intD∩ (Qd)C , D3 = D∩ ∂D∩

∂A3, and D4 = D∩∂D∩∂A4−D3. Notice that these four sets satisfy D = D1⊔D2⊔D3⊔D4.

Next, we will prove that each for these four sets has P∗-measure zero.

Because D is a degenerate set, the sets A3 ∪D1, A3 ∪D2, and A3 ∪ intD are all adver-

sarial Bayes classifiers. However, Lemma 145 implies that Dϵ
1 = Dϵ

2 = intDϵ and therefore

Sϵ(1A3∪D1) = Sϵ(1A3∪intD) = Sϵ(1A3∪D2). Because each of these sets is an adversarial Bayes

158



classifier, Equation (3.11) of Theorem 30 implies that P∗
0(A3∪D1) = P∗

0(A3∪intD) = P∗
0(A3∪

D2). As D1 and D2 are disjoint sets whose union is intD, it follows that P∗
0(intD) = 0. Anal-

ogously, comparing Sϵ(1(A4−D1)C ), Sϵ(1(A4−D2)C ), and Sϵ(1(A4−intD)C ) results in P∗
1(intD) = 0.

Next we argue that P∗(D3) = 0. Lemma 141 implies that Sϵ(1A3∪D3) = Sϵ(1A3) P0-a.e.,

and Equation (3.11) of Theorem 30 then implies that P∗
0(A3∪D3) = P∗

0(A3). Thus P∗
0(D3) =

0 because A3 and D3 are disjoint. Similarly, Lemma 141 implies that Sϵ(1(A3∪D3)C ) =

Sϵ(1AC3 −D3
) = Sϵ(1AC3 ) P1-a.e., and Equation (3.11) of Theorem 30 then implies that P∗

1(A
C
3 −

D3) = P∗
1(A

C
3 ), and thus P∗

1(D3) = 0.

Similarly, one can conclude that P∗(D4) = 0 by comparing A4, A4 −D4, and A4 ∪D4.

B.3.2.1 Proof of Lemma 142

Proof of Lemma 142. We will assume that Sϵ(1A1) = Sϵ(1A2) P0-a.e., the argument for

Sϵ(1AC1 ) = Sϵ(1AC2 ) P1-a.e. is analogous. If Sϵ(1A1) = Sϵ(1A2) P0-a.e., then

Sϵ(1A1) = max(Sϵ(1A1), Sϵ(1A2)) = Sϵ(max(1A1 ,1A2)) = Sϵ(1A1∪A2) P0-a.e.

However, Sϵ(1AC1 ) ≥ Sϵ(1(A1∪A2)C ). If this inequality were strict on a set of positive P1-

measure, we would have Rϵ(A1 ∪ A2) < Rϵ(A1) which would contradict the fact that A1 is

an adversarial Bayes classifier. Thus Sϵ(1AC1 ) = Sϵ(1(A1∪A2)C ) P1-a.e. The same argument

applied to A2 then shows that Sϵ(1AC1 ) = Sϵ(1(A1∪A2)C ) = Sϵ(1AC2 ) P1-a.e.

Now as Sϵ(1AC1 ) = Sϵ(1AC2 ) P1-a.e., one can conclude that

Sϵ(1AC1 ) = Sϵ(1AC2 ) = max(Sϵ(1AC1 ), Sϵ(1AC2 )) = Sϵ(1(A1∩A2)C ) P1-a.e.

An analogous argument implies Equation (B.11).
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B.3.2.2 Proof of Lemma 145

Before proving Lemma 145, we reproduce another useful intermediate result from [2].

Lemma 146. Let an be a sequence that approaches a. Then Bϵ(a) ⊂
⋃∞
n=1Bϵ(an).

Proof. Let y be any point in Bϵ(a) and let δ = ∥y − a∥. Pick n large enough so that

∥a− an∥ < ϵ− δ. Then

∥y − an∥ ≤ ∥a− an∥+ ∥y − a∥ < ϵ− δ + δ = ϵ

and thus y ∈ Bϵ(an).

Proof of Lemma 145. We will argue that U ϵ = (U ∩ Qd)ϵ, the argument for U ∩ (Qd)C is

analogous.

First, U ∩Qd ⊂ U implies that (U ∩Qd)ϵ ⊂ U ϵ.

For the opposite containment, let u be a point in U . We will argue that Bϵ(u) ⊂ (U∩Q)ϵ.

Because U is open, there is a ball Br(u) contained in U . Because Qd is dense in Rd, for every

y ∈ Br(u), there is a sequence yn ∈ Q converging to y. Thus Lemma 146 implies that

Bϵ(u) ⊂ Br(u)
ϵ ⊂ (Br(u) ∩Qd)ϵ ⊂ (U ∩Qd)ϵ

Taking a union over all u ∈ U results in U ϵ ⊂ (U ∩Qd)ϵ.
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B.4 Proof of Theorem 34

B.4.1 Proof of Lemma 53

Lemma 24 of [25] show that there exists a function η̂ and maximizers P∗
0,P∗

1 of R̄ for which

optimal attacks on η̂ are are given by P∗
0, P∗

1:

Proposition 147. There exists a function η̂ : Rd → [0, 1] and measures P∗
0 ∈ B∞

ϵ (P0),

P∗
1 ∈ B∞

ϵ (P1) with the following properties:

1. Let P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Then

η̂(y) = η∗(y) P∗ − a.e.

2. Let γ∗i be a coupling between Pi and P∗
i for which ess sup(x,y)∼γ∗i

∥x− y∥ ≤ ϵ. Then for

these P∗
0,P∗

1, η̂ satisfies

Iϵ(η̂)(x) = η̂(y) γ∗1-a.e. and Sϵ(η̂)(x) = η̂(y) γ∗0-a.e.

Recall that Theorem 2.6 of [33] proves that when W∞(Q,Q′) ≤ ϵ, there always exists a

coupling γ between Q and Q′ with ess sup(x,y)∼γ ∥x− y∥ ≤ ϵ.

Next, we prove that one can take Â1 = {η̂ > 1/2} and Â2 = {η̂ ≥ 1/2} in Lemma 53.

Proof of Lemma 53. Let P∗
0, P∗

1, γ
∗
0 , and γ

∗
1 be the measures given by Proposition 147 and

set P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Let η̂ be the function described by Proposition 147.

We will show that the classifiers Â1 = {η̂ > 1/2} and Â2 = {η̂ ≥ 1/2} satisfy the required

properties by verifying the complementary slackness conditions in Theorem 30.

Below, we verify these conditions for {η̂ > 1/2}, the argument for {η̂ ≥ 1/2} is analogous.

First, Item 1 of Proposition 147 implies that 1{η̂>1/2} = 1η∗>1/2 P∗-a.e. and 1{η̂>1/2}C =
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1{η̂≤1/2} = 1η∗≤1/2 P∗-a.e.

Therefore,

η∗1{η̂>1/2}C + (1− η∗)1{η̂>1/2} = C∗(η∗) P∗-a.e.

Next, Item 2 of Proposition 147 implies that η̂ assumes its maximum over closed ϵ-balls

P0-a.e. and hence Sϵ(1η̂>1/2)(x) = 1Sϵ(η̂(x))>1/2 P0-a.e. Additionally, Item 2 of Proposi-

tion 147 implies that 1Sϵ(η̂)(x)>1/2 = 1η̂(y)>1/2 γ
∗
0-a.e. Therefore, one can conclude that

∫
Sϵ(1η̂>1/2)(x)dP0(x) =

∫
1η̂(y)>1/2dγ

∗
0(x,y) =

∫
1η̂>1/2dP∗

0 (B.13)

Similarly, using the fact that Iϵ(η̂)(x) = η̂(y) γ∗1-a.e., one can show that
∫
Sϵ(1η̂≤1/2)dP1 =∫

1η̂≥1/2dP∗
1. This statement together with Equation (B.13) verifies Equation (3.11).

The classifiers Â1 and Â2 are minimal and maximal classifiers in the sense that

∫
Sϵ(1Â1

)dP0 ≤
∫
Sϵ(1A)dP0 ≤

∫
Sϵ(1Â2

)dP0

for any other adversarial Bayes classifier A.

Lemma 148. Let A be any adversarial Bayes classifier and let Â1, Â2 be the two adversarial

Bayes classifiers of Lemma 53. Then

∫
Sϵ(1Â1

)dP0 ≤
∫
Sϵ(1A)dP0 ≤

∫
Sϵ(1Â2

)dP0 (B.14)

and ∫
Sϵ(1ÂC2 )dP1 ≤

∫
Sϵ(1AC )dP1 ≤

∫
Sϵ(1ÂC1 )dP1. (B.15)

Proof. Let P∗
0, P∗

1, P∗, and η∗ be as described by Lemma 53. Then the complementary

slackness condition Equation (3.11) implies that
∫
Sϵ(1A)dP0 =

∫
1AdP∗

0 and Equation (3.12)

implies Equation (3.15), and hence
∫
1η∗>1/2dP∗

0 ≤
∫
1AdP∗

0 ≤
∫
1η∗≥1/2dP∗

0. Lemma 53
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implies that
∫
1Â1

dP∗
0 ≤

∫
1AdP∗

0 ≤
∫
1Â2

dP∗
0. The complementary slackness condition

(3.11) applied to Â1 and Â2 then implies Equation (B.14).

The fact that
∫
Sϵ(1AC ) = Rϵ

∗ −
∫
Sϵ(1A)dP0 for any adversarial Bayes classifier A then

implies Equation (B.15).

B.4.2 Proving Theorem 34

To start, we prove that Item B) and Item C) are equivalent even when P ̸≪ µ:

Proposition 149. The following are equivalent:

B) For all adversarial Bayes classifiers A, either the value of P0(A
ϵ) is unique or the value

of P1((A
C)ϵ) is unique

C) There are maximizers P∗
0,P∗

1 of R̄ for which P∗(η∗ = 1/2) = 0, where P∗ = P∗
0+P∗

1 and

η∗ = dP∗
1/dP∗

Proof. Item B) ⇒ Item C): Assume that P0(A
ϵ
1) = P0(A

ϵ
2) for any two adversarial

Bayes classifiers. Then Lemma 27 implies that P0((A1 ∪ A2)
ϵ) = P0((A1 ∩ A2)

ϵ). Then

1(A1∪A2)ϵ = 1(A1∩A2)ϵ P0-a.e. because (A1 ∩ A2)
ϵ ⊂ (A1 ∪ A2)

ϵ. As Aϵ1 and Aϵ2 are strictly

between (A1 ∩ A2)
ϵ and (A1 ∪ A2)

ϵ, one can conclude that

Sϵ(1A1) = 1Aϵ1 = 1Aϵ2 = Sϵ(1A2) P0-a.e.

Similarly, if P1((A
C
1 )

ϵ) = P1((A
C
2 )

ϵ) implies Sϵ(1A1) = Sϵ(1A2). Therefore, Item B) implies

Item 2) of Lemma 144. Consequently, Lemma 144 implies that P∗(Â1△Â2) = P∗(η∗ =

1/2) = 0, where P∗
0, P∗

1 are the measures described by Lemma 53 and Â1 and Â2 are the

adversarial Bayes classifiers described by Lemma 53.

Item C) ⇒ Item B): Assume there is a maximizer (P∗
0,P∗

1) of R̄ for which P∗(η∗ =

1/2) = 0, where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Then Equation (3.15) must hold, and
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P∗(η∗ = 1/2) = 0 implies that 1A = 1η∗>1/2 P∗-a.e. for any adversarial Bayes classifier

A. Consequently, 1A1 = 1A2 P∗-a.e. for any two adversarial Bayes classifiers A1, A2 or

equivalently, P∗(A1△A2) = 0. Corollary 143 and Lemma 144 imply that Sϵ(1A1) = Sϵ(1A2)

P0-a.e. and Sϵ(1AC1 ) = Sϵ(1AC2 ) P1-a.e., which implies Item B).

Finally, this result together with Proposition 51 implies Theorem 34.

Proof of Theorem 34. Proposition 149 states that Item B) implies Item C). It remains to

show Item A) implies Item B) and Item C) implies Item A).

Item A)⇒Item B): Assume that the the adversarial Bayes classifier is unique up

to degeneracy. Then Item 2) of Proposition 51 implies that P1(A
ϵ
1) = P1(A

ϵ
2) for any two

adversarial Bayes classifiers A1 and A2.

Item C) ⇒ Item A): Assume that P∗(η∗ = 1/2) = 0 for some (P∗
0,P∗

1) that maximize

R̄, where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗. Then Equation (3.15) implies that 1η∗>1/2 = 1A

P∗-a.e. for any adversarial Bayes classifier A. Thus if P∗(η∗ = 1/2) = 0 then 1A1 = 1A2

P∗
0-a.e. for any two adversarial Bayes classifiers A1, A2, or in other words, P∗(A1△A2) = 0.

Item 3) of Proposition 51 then implies that A1 and A2 are equivalent up to degeneracy. As

these adversarial Bayes classifiers were arbitrary, the adversarial Bayes classifier is unique

up to degeneracy.

B.5 More about the ϵ, −ϵ, and Sϵ operations

This appendix provides a unified exposition of several results relating to the ϵ and −ϵ

relations—namely Equations (3.16) and (3.17), Lemmas 55, 59 and 60. These results have

all appeared elsewhere in the literature —[2, 16].

The characterizations of the ϵ and −ϵ operations provided by Equation (3.16) and Equa-

tion (3.17) are an essential tool for understanding how ϵ and −ϵ interact.
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Proof of Equation (3.16). To show Equation (3.16), notice that x ∈ Aϵ iff x ∈ Bϵ(a) for

some element a of A. Thus:

x ∈ Aϵ ⇔ x ∈ Bϵ(a) for some a ∈ A⇔ a ∈ Bϵ(x) for some a ∈ A⇔ Bϵ(x) intersects A

Equation (3.17) then follows directly from Equation (3.16):

Proof of Equation (3.17). By Equation (3.16),

x ∈ (AC)ϵ ⇔ Bϵ(x) intersects A
C

Now A−ϵ = ((AC)ϵ)C , and so taking compliments of the relation above implies

x ∈ A−ϵ ⇔ Bϵ(x) does not intersect A
C ⇔ Bϵ(x) ⊂ A

Next, Equation (3.16) and Equation (3.17) immediately imply Lemma 59:

Proof of Lemma 59. By Equation (3.16), Equation (3.17), (Aϵ)−ϵ is the set of points x for

which Bϵ(x) ⊂ Aϵ. For any point a ∈ A, Bϵ(a) ⊂ Aϵ and thus A ⊂ (Aϵ)−ϵ. Applying this

statement to the set AC and then taking compliments results in (A−ϵ)ϵ ⊂ A.

Lemma 59 then immediately implies Lemma 60:

Proof of Lemma 60. First, Lemma 59 implies that A ⊂ (Aϵ)−ϵ and thus Aϵ ⊂ ((Aϵ)−ϵ)ϵ. At

the same time, Lemma 59 implies that ((Aϵ)−ϵ)ϵ =
((
Aϵ
)−ϵ)ϵ

⊂ Aϵ. Therefore, ((Aϵ)−ϵ)ϵ =

Aϵ. Applying this result to AC and then taking compliments then results in ((A−ϵ)ϵ)−ϵ = A−ϵ.
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Next, Lemma 59 implies that (A−ϵ)ϵ ⊂ A and hence ((A−ϵ)ϵ)ϵ ⊂ Aϵ. Applying this result

to AC and then taking compliments ((Aϵ)−ϵ)−ϵ ⊃ A−ϵ.

Lemma 55 is then an immediate consequence of Lemma 60.

B.6 Measurability

B.6.1 Defining the Universal σ-algebra

Let M+(Rd) be the set of finite positive measures on the Borel σ-algebra B(Rd). For a Borel

measure ν in M+(Rd), let Lν(Rd) be the completion of B(Rd) under ν. Then the universal

σ-algebra U (Rd) is defined as

U (Rd) =
⋂

ν∈B(Rd)

Lν(Rd)

In other words, U (Rd) is the σ-algebra of sets which are measurable with respect to the

completion of every finite positive Borel measure ν. See [10, Chapter 7] or [45] for more

about this construction.

Due to Theorem 56, throughout this paper, we adopt the convention that
∫
Sϵ(1A)dν is

the integral of Sϵ(1A) with respect to the completion of ν.

B.6.2 Proof of Theorem 57

First, notice that because every Borel set is universally measurable, infA∈B(Rd)R
ϵ(A) ≥

infA∈U (Rd)R
ϵ(A). The opposite inequality relies on a duality statement similar to The-

orem 29, but with the primal minimized over universally measurable sets and the dual

maximized over measures on U (Rd).
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For a Borel measure Q, there is a canonical extension to the universal σ-algebra called

the universal completion.

Definition 150. The universal completion Q̃ of a Borel Q is the completion of Q restricted

to the universal σ-algebra.

Notice that Q(E) = Q̃(E) for any Borel measure Q and Borel set E. As a consequence,

∫
gdQ =

∫
gdQ̃ for any Borel function g. (B.16)

In addition to the W∞-ball of Borel measures B∞
ϵ (Q) around Q, one can consider the

W∞ ball of universal completions of measures around Q, which we will call B̃∞
ϵ (Q).

Explicitly, for a Borel measure Q, define

B̃∞
ϵ (Q) = {Q̃′ : Q′ ∈ B∞

ϵ (Q)}.

The following result shows that if Q′ ∈ B∞
ϵ (Q), then W∞(Q̃, Q̃′) ≤ ϵ, and thus B̃∞

ϵ (Q)

contains only measures that are within ϵ of Q̃ in the W∞ metric.

Lemma 151. Let Q and Q′ be Borel measures with W∞(Q,Q′) ≤ ϵ and let Q̃, Q̃′ be their

universal completions. Then W∞(Q̃, Q̃′) ≤ ϵ.

Next, to compare the values of R̄ on B∞
ϵ (P0)×B∞

ϵ (P1) and B̃∞
ϵ (P0)× B̃∞

ϵ (P1), we show:

Corollary 152. Let P0,P1 be two Borel measures and let P̃0, P̃1 be their universal comple-

tions. Then R̄(P0,P1) = R̄(P̃0, P̃1).

Thus Lemma 151 and Corollary 152 imply that

sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) = sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1) (B.17)
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See Appendix B.6.3 for proofs of Lemma 151 and Corollary 152.

Furthermore,Lemma 138 and Equation (B.16) imply:

Corollary 153. Let Q be a finite positive measure on U (Rd). Then for any universally

measurable set A, ∫
Sϵ(1A)dQ ≥ sup

Q′∈B̃∞
ϵ (Q)

∫
1AdQ′

See Appendix B.6.3.3 for a proof.

This result implies a weak duality relation between the primal Rϵ minimized over U (Rd)

and the dual R̄ maximized over B̃∞
ϵ (P0)× B̃∞

ϵ (P1):

Lemma 154 (Weak Duality). Let P0,P1 be two Borel measures. Then

inf
A∈U (Rd)

Rϵ(A) ≥ sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1)

Proof. Let A be any universally measurable set and let P̃′
0, P̃′

1 be any measures in B̃∞
ϵ (P0)

and B̃∞
ϵ (P1) respectively.

Then Corollary 153 implies that

inf
A∈U (Rd)

Rϵ(A) ≥ inf
A∈U (Rd)

sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

∫
1ACdP̃′

1 +

∫
1AdP̃′

0

However, because inf-sup is always larger than a sup-inf, one can conclude that

inf
A∈U (Rd)

Rϵ(A) ≥ sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

inf
A∈U (Rd)

∫
1ACdP̃′

1 +

∫
1AdP̃′

0 = sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1)

This observation suffices to prove Theorem 57:
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Proof of Theorem 57. First, because every Borel set is universally measurable,

inf
A∈B(Rd)

Rϵ(A) ≥ inf
A∈U (Rd)

Rϵ(A).

Thus the strong duality result of Theorem 29 and Equation (B.17) imply that

inf
A∈U (Rd)

Rϵ(A) ≤ inf
A∈B(Rd)

Rϵ(A) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) = sup
P̃′
0∈B̃∞

ϵ (P0)

P̃′
1∈B̃∞

ϵ (P1)

R̄(P̃′
0, P̃′

1).

However, the weak duality statement of Lemma 154 implies that the inequality above must

actually be an equality.

B.6.3 Proofs of Lemma 151 and Corollaries 152 and 153

Lemma 7.26 of [10] provides a useful result for translating statements for B(Rd) to B(Rd).

Lemma 155. The set E is universally measurable iff given any Borel measure Q, there are

Borel sets B1, B2 for which B1 ⊂ E ⊂ B2 and Q(B1) = Q(B2).

The proofs of Lemma 151 and Corollaries 152 and 153 all rely on this result.

B.6.3.1 Proof of Lemma 151

Notice that if γ is a coupling between two Borel measures, ess sup(x,y)∼γ ∥x − y∥ ≤ ϵ iff

γ(∆C
ϵ ) = 0, where ∆ϵ is the set defined by

∆ϵ = {(x,y) ∈ Rd × Rd : ∥x− y∥ ≤ ϵ}. (B.18)

This notation is helpful in the proof of Lemma 151.

Proof of Lemma 151. Let γ be the Borel coupling betweenQ andQ′ for which ess sup(x,y)∼γ ∥x−

y∥ ≤ ϵ, which exists by Theorem 2.6 of [33]. Let γ be the completion of γ restricted to
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σ(U (Rd) × U (Rd)), the σ-algebra generated by U (Rd) × U (Rd). We will show γ is the

desired coupling between Q̃ and Q̃′. Let S be an arbitrary universally measurable set in

Rd. Then Lemma 155 states that there are Borel sets E1, E2 for which E1 ⊂ S ⊂ E2 and

Q̃(E1) = Q̃(S) = Q̃(E2). Then because γ and γ are equal on Borel sets,

Q̃(E1) = Q(E1) = γ(E1 × Rd) = γ(E1 × Rd)

and similarly,

Q̃(E2) = Q(E2) = γ(E2 × Rd) = γ(E2 × Rd)

Therefore,

Q̃(S) = γ(E1 × Rd) = γ(E2 × Rd) = γ(S × Rd).

Similarly, one can argue

Q̃′(S) = γ(Rd × S)

Therefore, γ is a coupling between Q̃ and Q̃′. Next, recall that ess sup(x,y)∼γ ∥x−y∥ ≤ ϵ

iff γ(∆C
ϵ ) = 0, where ∆ϵ defined by Equation (B.18).

Therefore, because ∆ϵ is closed (and thus Borel),

γ(∆C
ϵ ) = γ(∆C

ϵ ) = 0

Consequently, ess sup(x,y)∼γ ∥x− y∥ ≤ ϵ and thus W∞(Q̃, Q̃′) ≤ ϵ.

B.6.3.2 Proof of Corollary 152

Next, we will show:

Lemma 156. Let ν, λ be two Borel measures with ν ≪ λ, and let dν/dλ be the Radon-

Nikodym derivative. Then dν̃/dλ̃ = dν/dλ λ̃-a.e.
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This result together with Equation (B.16) immediately implies Corollary 152.

Proof. First, if a function g is Borel measurable, (g−1 : (R,B(R)) → (R,B(Rd)), then it

is necessarily universally measurable (g−1 : (R,B(R)) → (Rd,U (Rd))). Thus the Radon-

Nikodym derivative dν/dλ is both Borel measurable and universally measurable.

Next, if S ∈ U (Rd) then Lemma 155 implies there is a Borel set E and λ-null sets N1, N2

for which S = E ∪N1 −N2. Because ν is absolutely continuous with respect to λ, the sets

N1 and N2 are null under ν as well. Therefore, by the defintion of the Radon-Nikodym

derivative dν/dλ and the fact that
∫
gdλ =

∫
gdλ̃ for all Borel functions g,

ν̃(S) = ν(E) =

∫
E

dν

dλ
dλ =

∫
E

dν

dλ
dλ̃ =

∫
S

dν

dλ
dλ̃

Because the Radon-Nikodym derivative is unique λ̃-a.e., it follows that dν̃/dλ̃ = dν/dλ

λ̃-a.e.

B.6.3.3 Proof of Corollary 153

Proof of Corollary 153. Fix a Q′ ∈ B̃∞
ϵ (Q) and assume that Q′ = λ̃ for some λ ∈ B∞

ϵ (Q).

Then Lemma 155 states that there is a Borel set B1 ⊂ A for which

λ(B1) = λ̃(B1) = Q′(B1) = Q′(A).

Thus Lemma 138 and Equation (B.16) imply that
∫
1B1dQ′ ≤

∫
Sϵ(1B1)dQ. Furthermore,

B1 ⊂ A implies Sϵ(1B1) ≤ Sϵ(1A) and consequently:

∫
1AdQ′ =

∫
1B1dQ′ ≤

∫
Sϵ(1B1)dQ ≤

∫
Sϵ(1A)dQ

Taking the supremum over all Q′ ∈ B̃∞
ϵ (Q) proves the result.
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B.7 Deferred Proofs From Section 3.5.3

B.7.1 Proof of Lemma 58

Proof of Lemma 58. Let {Di}∞i=1 be a countable sequence of degenerate sets for an ad-

versarial Bayes classifier A. Then by Proposition 51, one can conclude that Sϵ(1A) =

Sϵ(1A∪Di) = 1Aϵ∪Dϵi P0-a.e. and Sϵ(1AC ) = Sϵ(1AC∪Di) = 1(AC)ϵ∪Dϵi P1-a.e. for every

i. Countable additivity then implies that Sϵ(1A) = 1Aϵ∪⋃∞
i=1D

ϵ
i
= Sϵ(1A∪⋃∞

i=1Di
) P0-a.e.

and Sϵ(1AC ) = 1(AC)ϵ∪
⋃∞
i=1D

ϵ
i
= Sϵ(1AC∪⋃∞

i=1Di
). Therefore, Proposition 51 implies that A,

A ∪
⋃∞
i=1Di, and A−

⋃∞
i=1Di are all equivalent up to degeneracy. Consequently,

⋃∞
i=1Di is

a degenerate set.

B.7.2 Proof of Proposition 62

Lemma 157. Let A be an adversarial Bayes classifier. If C is a connected component of A

with C−ϵ = ∅, then

Cϵ = {y ∈ AC : Bϵ(y) intersects C}ϵ (B.19)

If C is a component of AC with C−ϵ = ∅, then

Cϵ = {y ∈ A : Bϵ(y) intersects C}ϵ (B.20)

Proof. We will prove Equation (B.19), the argument for Equation (B.20) is analogous. As-

sume that C is a component of A, Equation (3.16) implies the containment ⊃ of Equa-

tion (B.19).

Next, we prove the containment ⊂ in Equation (B.19). Specifically, we will show that

for every x ∈ Cϵ, there is a y ∈ AC for which x ∈ Bϵ(y) and Bϵ(y) intersects C.

To show the opposite containment, we show that for every x ∈ Cϵ, there is a y ∈ AC for
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which x ∈ Bϵ(y) and Bϵ(y) intersects C.

Let x ∈ C. Because C−ϵ = ∅, Equation (3.17) implies that Bϵ(x) is not entirely contained

in C. Thus the set C ∪Bϵ(x) is connected and strictly contains C. Recall that a connected

component of a set A is a maximal connected subset. If Bϵ(x) were entirely contained in A,

C ∪Bϵ(x) would be a connected subset of A that strictly contains C, and then C would not

be a maximal connected subset of A. Therefore, Bϵ(x) contains a point y in AC , and Bϵ(y)

intersects C at the point x.

Next assume that x ∈ Cϵ but x ̸∈ C. Then Equation (3.16) states that the ball Bϵ(x)

intersects C at some point z. Consider the line defined by ℓ := {tx + (1− t)z : 0 ≤ t ≤ 1}.

Again ℓ is a connected set that intersects C, so ℓ ∪ C is connected as well. However, ℓ also

contains a point not in C and thus if ℓ were entirely contained in A, then C ∪ ℓ would be a

connected subset of A that strictly contains C. As C is a maximal connected subset of A,

the set ℓ is not entirely contained in A. Let y be any point in AC ∩ ℓ, then Bϵ(y) intersects

C at the point z and contains x.

Proof of Proposition 62. First assume that C is a connected component of A with C−ϵ = ∅.

We will argue that C ⊂ (Aϵ)−ϵ − (A−ϵ)ϵ, and then Corollary 61 will imply that C is a

degenerate set for A.

If C is a component of A, then Cϵ ⊂ Aϵ and thus C ⊂ (Cϵ)−ϵ ⊂ (Aϵ)−ϵ. Next, Equa-

tion (B.19) of Lemma 157 implies that Cϵ ⊂ (AC)ϵ and thus C ⊂ (Cϵ)−ϵ ⊂ ((AC)ϵ)−ϵ =

((A−ϵ)ϵ)C . Therefore, C is disjoint from (A−ϵ)ϵ. Consequently, C is contained in (Aϵ)−ϵ −

(A−ϵ)ϵ, which is degenerate by Lemma 60.

The argument for a connected component of AC is analogous, with Equation (B.20) in

place of Equation (B.19)

As each connected component of A or AC is contained in the degenerate set (Aϵ)−ϵ −

(A−ϵ)ϵ, it follows that the set in (3.18) is contained in the degenerate set (Aϵ)−ϵ−(A−ϵ)ϵ.
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B.7.3 Proof of Lemma 63

Proof of Lemma 63. We will show that P0(D
−ϵ) = 0, the argument for P1 is analogous.

As both A − D and A ∪ D are adversarial Bayes classifiers, Proposition 51 implies that

P0((A−D)ϵ∪Dϵ) = P0((A−D)ϵ) and thus P0(D
ϵ−(A−D)ϵ) = 0. However, Equation (3.16)

and Equation (3.17) imply that

Dϵ − (A−D)ϵ = {x : Bϵ(x) intersects D but not A−D}

⊃ {x : Bϵ(x) ⊂ D} = D−ϵ

Thus P0(D
−ϵ) = 0.

B.8 Proof of Theorem 35

Proof of Theorem 35. Let Ã1 ⊂ Ã2 be the adversarial Bayes classifiers defined in Lemma 65

with

Ã1 =
M⋃
i=m

(ãi, b̃i), ÃC2 =
N⋃
j=n

(ẽj, f̃j).

for which D = Ã2 − Ã1 is a degenerate set. Then one can write

R = D ⊔
M⋃
i=m

(ãi, b̃i) ⊔
N⋃
i=n

(ẽi, f̃i) (B.21)

For each i, define

âi = inf{x : (x, b̃i) does not intersect Ã
C
2 }

b̂i = sup{x : (ãi, x) does not intersect Ã
C
2 }
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and let

Â =
M⋃
i=m

(âi, b̂i)

Notice that (âi, b̂i) ⊃ (ãi, b̃i) so that b̂i − âi > 2ϵ. Similarly, by the definition of the âi

and b̂i, every interval (b̂i, âi+1) with i, i + 1 ∈ [m,M ] must include some (ẽj, f̃j) and thus

b̂i − âi+1 > 2ϵ. As Ã△A ⊂ D, the set Ã is an adversarial Bayes classifier equivalent to A.

Next, we will show that any two intervals (âk, b̂k), (âp, b̂p) are either disjoint or equal.

Assume that (âk, b̂k) and (âp, b̂p) intersect at a point x. By the definition of b̂k, (x, b̂k) does

not intersect ÃC2 and thus b̂p ≥ b̂k. Reversing the roles of b̂p and b̂k, one can then conclude

that b̂p = b̂k. One can show that âp = âk via a similar argument. Thus we can choose (ai, bi)

be unique disjoint intervals for which

K⊔
i=k

(ai, bi) =
M⋃
i=m

(âi, b̂i)

B.9 Deferred Proofs from Section 3.6.2

B.9.1 Proof of Lemma 68

First, we show Lemma 68 for intervals near the boundary of suppP.

Lemma 158. Assume P ≪ µ and let A =
⋃M
i=m(ai, bi) be a regular adversarial Bayes

classifier for radius ϵ. Let y represent any of the ais or bis. Let I be an interval for which

suppP ⊂ I

• Assume that I = [ℓ,∞) or I = [ℓ, r].

If y ∈ (ℓ− ϵ, ℓ + ϵ] then [ℓ− ϵ, y] is a degenerate set. If furthermore suppP = I, then

for some δ > 0, either η ≡ 0 or η ≡ 1 µ-a.e. on [ℓ, ℓ+ δ].
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• Assume that I = (−∞, r] or I = [ℓ, r].

If y ∈ [r − ϵ, r + ϵ) then [y, r − ϵ] is a degenerate set. If furthermore suppP = I, then

for some δ > 0, either η ≡ 0 or η ≡ 1 µ-a.e. on [r − δ, r].

Proof. We will prove the first bullet; the second bullet follows from the first by considering

distributions with densities p̃0(x) = p0(−x) and p̃1(x) = p1(−x).

Assume that some y = ai is in (ℓ− ϵ, ℓ+ ϵ], the argument for y = bi is analogous. Then

because A is adversarial Bayes classifier:

0 ≥ Rϵ(A)−Rϵ(A ∪ [ℓ− ϵ, ai]) =

∫ ai+ϵ

ℓ

pdx−
∫ ai+ϵ

ℓ

p0dx =

∫ ai+ϵ

ℓ

p1(x)dx. (B.22)

Consequently,
∫ ai+ϵ
ℓ

p1(x)dx = 0 and thus the set A∪ [ℓ− ϵ, ai] must be an adversarial Bayes

classifier as well.

First, we prove that the interval [ℓ − ϵ, ai] is a degenerate set. Let D1, D2 be arbitrary

measurable subsets of [ℓ− ϵ, ai]. Then

Rϵ(A ∪D1 −D2)−Rϵ(A ∪ [ℓ− ϵ, ai]) ≤
∫ ai+ϵ

ℓ

pdx−
∫ ai+ϵ

ℓ

p0dx =

∫ ai+ϵ

ℓ

p1(x)dx

and this quantity must be zero by Equation (B.22). Therefore, the set A ∪ D1 − D2 is an

adversarial Bayes classifier.

Next, we will show that if suppP = I, then η = 0 µ-a.e. on a set of positive measure. By

assumption ai > ℓ − ϵ and thus δ = ai + ϵ − ℓ > 0. As [ℓ, ℓ + δ] ⊂ suppP, Equation (B.22)

implies that η ≡ 0 µ-a.e. on [ℓ, ℓ+ δ].

Proof of Lemma 68. Assume that the endpoints of I are d1, d2, so that I = [d1, d2] (Corol-

lary 67 implies that |I| <∞). Define an interval J via

J =
⋃
I′⊃I:

I degenerate interval

I ′
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Because each interval I ′ includes I, the interval J can be expressed as a countable union of

intervals of length at least |I| and thus is a degenerate set as well by Lemma 58. The interval

J must be closed because the boundary of every adversarial Bayes classifier is a degenerate set

when P ≪ µ. If J ∩ (suppPϵ− int suppP−ϵ) is nonempty, Lemma 158 implies that η ∈ {0, 1}

on a set of positive measure under P. It remains to consider the case J ⊂ int suppP−ϵ.

Corollary 67 implies that J has finite length and so one can express J as J = [d3, d4]. Now

if any point {x} in [d3 − ϵ, d3) were a degenerate set, then Lemma 58 and Lemma 64 would

imply that ((J∪{x})ϵ)−ϵ = [x, d4] would be a degenerate interval strictly containing J , which

would contradict the definition of J . Thus [d3 − ϵ, d3) cannot contain any degenerate sets.

Similarly, if this interval contains both points in A and AC , Corollary 61 and Proposition 62

imply that there would be an interval I ′ that strictly contains J . Thus [d3 − ϵ, d3) must be

contained entirely in A or AC . Similarly, (d4, d4 + ϵ] must be contained entirely in A or AC .

We will analyze the two cases (d3−ϵ, d3], [d4, d4+ϵ) ⊂ A and (d3−ϵ, d3] ⊂ A, [d4, d4+ϵ) ⊂

AC . The cases (d3 − ϵ, d3], [d4, d4 + ϵ) ⊂ AC and (d3 − ϵ, d3] ⊂ AC , [d4, d4 + ϵ) ⊂ A are

analogous.

Assume first that (d3 − ϵ, d3], [d4, d4 + ϵ) ⊂ A. Then because J is degenerate and

J ϵ ⊂ suppP, Corollary 67 implies that |J | ≤ 2ϵ. Hence one can conclude

0 = Rϵ(A−J)−Rϵ(A∪J) =
∫ d4+ϵ

d3−ϵ
p(x)dx−

∫ d4+ϵ

d3−ϵ
p0(x)dx =

∫ d4+ϵ

d3−ϵ
p1(x)dx ≥

∫ d2+ϵ

d1−ϵ
p1(x)dx.

Thus on the interval [d1 − ϵ, d2 + ϵ], one can conclude that p1(x) = 0 µ-a.e. As [d1, d2] ⊂

int suppP−ϵ and d2 > d1, one can conclude that [d1 − ϵ, d2 + ϵ] intersects suppP on an open

set. Thus η(x) = 0 µ-a.e. on a set of positive measure.

Next assume that (d3 − ϵ, d3] ⊂ A, [d4, d4 + ϵ) ⊂ AC . Again, Corollary 67 implies that
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|I| ≤ 2ϵ. Then:

0 = Rϵ(A ∪ (J ∩Q)− (J ∩QC))−Rϵ(A ∪ J)

≥
∫ d4+ϵ

d3−ϵ
p(x)dx−

(∫ d4−ϵ

d3−ϵ
p0(x)dx+

∫ d4+ϵ

d4−ϵ
p(x)dx

)
≥
∫ d4+ϵ

d3−ϵ
p1(x)dx ≥

∫ d2−ϵ

d1−ϵ
p1(x)dx

Thus p1(x) = 0 on [d1 − ϵ, d2 − ϵ].

Now [d1, d2] ⊂ int suppP−ϵ implies that [d1 − ϵ, d2 − ϵ], intersects suppP on an open

interval. Thus η(x) = 0 on a set of positive measure.

B.9.2 Proof of the fourth bullet of Theorem 38

The following lemma implies (suppPϵ)C is a degenerate set.

Lemma 159. If A and Bϵ are disjoint, then Aϵ and B are disjoint.

Proof. We will show the contrapositive of this statement: if Aϵ and B intersect, then A and

Bϵ intersect.

If Aϵ an B intersect, then there are a ∈ A, b ∈ B and h ∈ Bϵ(0) for which a + h = b

and thus a = b− h ∈ Bϵ. Thus A and Bϵ intersect.

Next, we argue that the set (suppPϵ)C ∪ ∂A is indeed degenerate for any regular adver-

sarial Bayes classifier A. The proof of this result relies on Lemma 139.

Lemma 160. Assume that P ≪ µ and let A be a regular adversarial Bayes classifier. Then

the set (suppPϵ)C ∪ ∂A is degenerate for A.

Proof. First, suppPϵ and (suppPϵ)C are disjoint, so Lemma 159 implies that suppP and

((suppPϵ)C)ϵ) are disjoint. Thus P((suppPϵ)C)ϵ) = 0, and so (suppPϵ)C is a degenerate set.

Next, Lemma 52 implies that (suppPϵ)C is a degenerate set. Lemma 52 implies that ∂A is

a degenerate set. Lastly, Lemma 58 implies that the union of the three sets ∂A, (suppPϵ)C ,

and ∂(suppPϵ)C is a degenerate set.
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Next, using the fact that (suppPϵ)C is degenerate, one can prove the fourth bullet of

Theorem 38 for regular adversarial Bayes classifiers.

Lemma 161. Assume that P ≪ µ, P(η = 0 or 1) = 0, and suppP is an interval. Then if D

is a degenerate set for a regular adversarial Bayes classifier A, then D ⊂ (suppPϵ)C ∪ ∂A.

Proof. Let D be a degenerate set disjoint from (suppPϵ)C . We will show that D ⊂ ∂A. First,

we use a proof by contradiction to argue that the points in D ∪ ∂A are strictly greater than

2ϵ apart. If ∂A and D are both degenerate, Lemma 58 implies that D ∪ ∂A is degenerate as

well. For contradiction, assume that x ≤ y are two points in D ∪ ∂A with y− x ≤ 2ϵ. Then

Lemma 64 implies that [x, y] ⊂ ((D ∪ ∂A)ϵ)−ϵ is a degenerate set as well. This statement

contradicts Lemma 68. Therefore, D ∪ ∂A is comprised of points that are at least 2ϵ apart.

Next, we will show that a degenerate set cannot include any points in int suppPϵ which

are more than 2ϵ from ∂A. Let z be any point in int suppPϵ that is strictly more than 2ϵ

from ∂A. Assume first that z ∈ A. Then

Rϵ(A− {z})−Rϵ(A) =

∫ z+ϵ

z−ϵ
η(x)dP

However, if z ∈ int suppPϵ then (z− ϵ, z+ ϵ) ̸⊂ suppPC and thus has positive measure under

P. As η(x) > 0 on suppP, one can conclude that Rϵ(A − {z}) − Rϵ(A) > 0. Similarly, if

z ∈ AC , then one can show that Rϵ(A ∪ {z}) − Rϵ(A) > 0. Therefore z cannot be in any

degenerate set.

In summary: D ∪ ∂A is comprised of points that are at least 2ϵ apart, but no more than

2ϵ from ∂A. Therefore, one can conclude that D ⊂ ∂A.

Finally, one can extend Lemma 161 to all adversarial Bayes classifiers by comparing the

boundary of a given adversarial Bayes classifier A to the boundary of an equivalent regular

adversarial Bayes classifier Ar.
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Proof of the fourth bullet of Theorem 38. Any adversarial Bayes classifier A is equivalent up

to degeneracy to a regular adversarial Bayes classifier Ar. Lemma 161 implies that (Ar△A)∩

int suppPϵ ⊂ ∂Ar∩int suppPϵ, where E1△E2 = E1∩EC
2 ∪E2∩EC

1 is the symmetric difference

between two sets. Thus there are disjoint sets S1, S2 ⊂ ∂Ar for which A ∩ int suppPϵ =

(Ar ∪ S1 − S2) ∩ int suppPϵ. Because Ar, A
C
r are unions of intervals of length at least 2ϵ,

then ∂Ar = ∂(Ar ∪ S1 − S2) and consequently, ∂Ar ∩ int suppPϵ = ∂A ∩ int suppPϵ. This

statement together with Lemma 160 implies the result.

B.10 Deferred Proofs from Section 3.6.3

In this appendix, we adopt the same notational convention as Section 3.6.3 regarding the

ais and bis: Namely, when A =
⋃M
i=m(ai, bi) is a regular adversarial Bayes classifier, aM+1 is

defined to be +∞ if M is finite and bm−1 is defined to be −∞ if m is finite.

The following observation will assist in proving the first bullet of Lemma 70.

Lemma 162. Let ϵ2 > ϵ1. If R minimizes Rϵ2 but ∅ minimizes Rϵ1, then both R and ∅

minimize both Rϵ1 and Rϵ2.

Similarly, if ∅ minimizes Rϵ2 but R minimizes Rϵ1, then both R and ∅ minimize both Rϵ1

and Rϵ2.

Proof. First, assume that R minimizes Rϵ2 and ∅ minimizes Rϵ1 . The quantities

Rϵ(R) =
∫
R
dP0 Rϵ(∅) =

∫
R
dP1

are independent of the value of ϵ. Next, notice that Rϵ2(A) ≥ Rϵ1(A) for an set A. Therefore,

Rϵ2
∗ ≥ Rϵ1

∗ = Rϵ1(∅) = Rϵ2(∅),

where Rϵ
∗ = infAR

ϵ(A). Thus ∅ also minimizes Rϵ2 . As a result, the sets R and ∅ achieve
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the same Rϵ2 risk, and so

Rϵ1(R) = Rϵ2(R) = Rϵ2(∅) = Rϵ1(∅).

Consequently, R is also a minimizer of Rϵ1 .

Next, swapping the roles of P0 and P1 shows that if ∅ minimizes Rϵ2 and R minimizes

Rϵ1 then R, ∅ minimize both Rϵ1 and Rϵ2

Next, recall that Lemma 158 implies that if the an endpoint of an adversarial Bayes

classifier is too close to the boundary of suppP, then that endpoint must be in the boundary

of a degenerate interval. As a result:

Corollary 163. Assume P ≪ µ is a measure for which suppP is an interval I, and P(η =

0 or 1) = 0. Then if A is a regular adversarial Bayes classifier at radius ϵ, then A has no

finite endpoints in Iϵ − int I−ϵ.

This result implies in the proof of Lemma 70, one only need consider a1i , b
1
i , a

2
j , b

2
j contained

in I−ϵ2 .

Proof of Lemma 70. We will show that (b1i , a
1
i+1) ∩ Iϵ1 does not include any non-empty

(a2j , b
2
j)∩ Iϵ1 , the argument for (a1i , b

1
i )∩ Iϵ1 and (a2j , b

2
j+1)∩ Iϵ1 is analogous. Fix an interval

(a2j , b
2
j) and for contradiction, assume that (a2j , b

2
j)∩Iϵ1 ̸= ∅ and (a2j , b

2
j)∩Iϵ1 ⊂ (b1i , a

1
i+1)∩Iϵ1 .

First, notice that the assumption η ̸= 0, 1 implies that none of the a2js, b
2
js are in Iϵ2 −

int I−ϵ2 due to Corollary 163. Thus because the intersection (a2j , b
2
j)∩ Iϵ1 is non-empty, then

either Iϵ2 ⊂ (a2j , b
2
j) or at least one endpoint of (a2j , b

2
j) is in I

−ϵ2 .

If in fact (a2j , b
2
j) ⊃ Iϵ2 , then (b1i+1, a

1
i ) ⊃ (a2j , b

2
j) must include Iϵ1 . Thus Rϵ1(A1) = Rϵ1(∅)

while Rϵ2(A2) = Rϵ2(R). Lemma 162 then implies that R, ∅ are both adversarial Bayes

classifiers for both perturbation sizes ϵ1 and ϵ2, which implies the first bullet of Lemma 70.
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Thus, to show the second bullet of Lemma 70, it remains to consider (a2j , b
2
j) ̸⊃ Iϵ2 . As

b2j − a2j > 2ϵ2 and the interval (a2j , b
2
j) is included in the adversarial Bayes classifier A2, it

follows that Rϵ(A2) ≤ Rϵ(A2 − (a2j , b
2
j)) which implies

∫ a2j+ϵ2

a2j−ϵ2
pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ b2j+ϵ2

b2j−ϵ2
pdx ≤

∫ b2j+ϵ2

a2j−ϵ2
p1dx

and consequently ∫ b2j+ϵ2

a2j−ϵ2
p0dx ≤

∫ b2j−ϵ2

a2j+ϵ2

p1dx. (B.23)

Next, b2j − a2j > 2ϵ2 and thus (b2j − (ϵ2 − ϵ1))− (a2j + (ϵ2 − ϵ1)) > 2ϵ1. Notice that

(a2j + ϵ2 − ϵ1, b
2
j − (ϵ2 − ϵ1)) ∩ Iϵ1 ⊂ (a2j , b

2
j) ∩ Iϵ1 ⊂ (b1i , a

1
i+1) ∩ Iϵ1

is then a connected component of (A1 ∪ (a2j + (ϵ2 − ϵ1), b
2
j − (ϵ2 − ϵ1))) ∩ Iϵ1 . Therefore,

Rϵ1(A1)−Rϵ1(A1 ∪ (a2j + ϵ2 − ϵ1, b
2
j − (ϵ2 − ϵ1)))

=

∫ di,j

ci,j

p1dx−

(∫ a2j+ϵ2

ci,j

pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ di,j

b2j−ϵ2
pdx

)

where ci,j = max(b1i +ϵ1, a
2
j+ϵ2−2ϵ1) and di,j = min(a1i+1+ϵ1, b

2
j−ϵ2+2ϵ1). We will now

argue that this quantity is positive, which will contradict the fact that A1 is an adversarial

Bayes classifier.

Adding ∫ a2j+ϵ2

ci,j

p1dx+

∫ di,j

b2j−ϵ2
p1dx
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to both sides of Equation (B.23) implies that

∫ di,j

ci,j

p1dx ≥
∫ a2j+ϵ2

ci,j

pdx+

∫ di,j

b2j−ϵ2
pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx+

∫ ci,j

a2j−ϵ2
p0dx+

∫ b2j+ϵ2

di,j

p0dx

>

∫ a2j+ϵ2

ci,j

pdx+

∫ di,j

b2j−ϵ2
pdx+

∫ b2j−ϵ2

a2j+ϵ2

p0dx (B.24)

We will now prove that this last inequality is in fact strict. First, recall that the interval

(a2j , b
2
j) does not contain I

ϵ2 and thus Corollary 163 implies that at least one of a2j , b
2
j must

be in int I−ϵ2 . Consequently, suppP must contain at least one of a2j − ϵ and b2j + ϵ. Lastly,

ci,j − (a2j − ϵ2) ≥ 2(ϵ2 − ϵ1) > 0 and b2j + ϵ − di,j ≥ 2(ϵ2 − ϵ1) > 0 and thus at least one

of the intervals [a2j − ϵ, ci,j], [di,j, b
2
j + ϵ2] must have positive P-measure. The assumption

P(η = 0 or 1) = 0 implies suppP0 = suppP1 and consequently one of these intervals must

have positive P0-measure.

The strict inequality in Equation (B.24) implies Rϵ1(A1)−Rϵ1(A∪ (a2j + ϵ2− ϵ1, b2j − (ϵ2−

ϵ1)) > 0, which contradicts the fact that A is an adversarial Bayes classifier.

Theorem 39 then directly follows from Lemma 70.

Proof of Theorem 39. The first bullet of Lemma 70 together with the fourth bullet of The-

orem 38 imply that if both ∅, R are adversarial Bayes classifiers for perturbation size

ϵi, then either A ∩ Iϵi = R ∩ Iϵi and AC ∩ Iϵi = ∅ ∩ Iϵi , or A ∩ Iϵi = ∅ ∩ Iϵi and

Aϵ∩ Iϵi = R∩ Iϵi . In either case, one can conclude that comp(A∩ Iϵ1)+ comp(AC ∩ Iϵ1) = 1

and comp(A ∩ Iϵ2) + comp(AC ∩ Iϵ2) = 1.

Next, assume that for perturbation size ϵ1, the sets R, ∅ are not both adversarial Bayes

classifiers. Corollary 163 implies that there are no a2j , b
2
j ∈ Iϵ2 −I−ϵ2 . As I−ϵ2 ⊂ Iϵ1 ⊂ Iϵ2 are

all intervals which are connected sets, one can conclude that comp(A2∩Iϵ2) = comp(A2∩Iϵ1)

and comp(AC2 ∩Iϵ2) = comp(AC2 ∩Iϵ1) . Therefore, it remains to show that comp(A1∩Iϵ1) ≥
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comp(A2 ∩ Iϵ1) and comp(AC1 ∩ Iϵ1) ≥ comp(AC2 ∩ Iϵ1). We will show the statement for

A1 ∩ Iϵ1 and A2 ∩ Iϵ1 , the argument for AC1 ∩ Iϵ1 and AC2 ∩ Iϵ1 is analogous.

Let

A1 =
M⋃
i=m

(a1i , b
1
i ), A2 =

N⋃
j=n

(a2j , b
2
j).

Because Iϵ1 is an interval, the intersections (a1i , b
1
i ) ∩ Iϵ1 , (b2j , a2j+1) ∩ Iϵ1 are intervals for

i ∈ [m,M ] and j ∈ [n,N ]. If the interval (a1i , b
1
i )∩Iϵ1 intersects both the intervals (a2j , b

2
j)∩Iϵ1

and (a2j+1, b
2
j+1)∩Iϵ1 for some j, then (a1i , b

1
i )∩Iϵ1 must contain some (b2j , a

2
j+1)∩Iϵ1 for some j,

which contradicts Lemma 70. Thus there is at most one interval (a2j , b
2
j)∩Iϵ1 for each interval

(a1i , b
1
i ) ∩ Iϵ1 , which implies that comp(A1 ∩ Iϵ1) ≥ comp(A2 ∩ Iϵ1) = comp(A2 ∩ Iϵ2).

B.11 Computational Details of Examples and

proofs of Propositions 49 and 50

The following lemma is helpful for verifying the second order necessary conditions for gaus-

sian mixtures.

Lemma 164. Let g(x) = t√
2πσ

e−
(x−µ)2

2σ2 . Then g′(x) = −x−µ
σ2 g(x).

Proof. The chain rule implies that

g′(x) = −x− µ

σ2
· t√

2πσ
e−

(x−µ)2

2σ2 = −x− µ

σ2
g(x)
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B.11.1 Further details from Example 41

It remains to verify two of the claims made in Example 41— namely, 1) that b(ϵ) does

not satisfy the second order necessary condition Equation (3.13b), and 2) Comparing the

adversarial risks of R, ∅, (a(ϵ),+∞) to prove that (a(ϵ),+∞) is an adversarial Bayes classifier

iff ϵ ≤ µ1−µ0
2

and R, ∅ are adversarial Bayes classifiers iff ϵ ≥ µ1−µ0
2

.

1) Showing b(ϵ) doesn’t satisfy the second order necessary condition

Equation (3.13b)

Due to Lemma 164 the equation Equation (3.13b) reduces to

p′0(b(ϵ) + ϵ)− p′1(b(ϵ)− ϵ) = −b(ϵ) + ϵ− µ0

σ2
p0(b(ϵ)− ϵ) +

b(ϵ)− ϵ− µ1

σ2
p1(b(ϵ) + ϵ)

Furthermore, the first order necessary condition p0(b(ϵ)− ϵ)− p1(b(ϵ) + ϵ) = 0 implies that

p′0(b(ϵ) + ϵ)− p′1(b(ϵ)− ϵ) =

p1(b+ ϵ)

σ2
(−(b(ϵ) + ϵ− µ0) + (b(ϵ)− ϵ− µ1)) =

p1(b+ ϵ)

σ2
(µ0 − µ1 − 2ϵ)

This quantity is negative due to the assumption µ1 > µ0.

2) Comparing the adversarial risks of R, ∅, and (a(ϵ),+∞)

First, notice that Rϵ(∅) = Rϵ(R) = 1
2
.

Thus it suffices to compare the risks of (a(ϵ),+∞) and R. Let

Φ(x) =

∫ x

−∞

1√
2π
e−

t2

2 dt
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be the cdf of a standard gaussian. Then Rϵ((a(ϵ),+∞)) ≤ Rϵ(R) iff

∫ a(ϵ)+ϵ

−∞
p1(x)dx+

∫ +∞

a(ϵ)−ϵ
p0(x)dx ≤

∫ +∞

−∞
p0(x)dx.

Furthermore, because p0 and p1 are strictly positive the equation above is equivalent to

∫ a(ϵ)+ϵ

−∞

1√
2πσ

e−
(x−µ1)

2

2σ2 dx ≤
∫ a(ϵ)−ϵ

−∞

1√
2πσ

e−
(x−µ0)

2

2σ2

which is also equivalent to Φ
(
a(ϵ)+ϵ−µ1

σ

)
≤ Φ

(
a(ϵ)−ϵ−µ0

σ

)
. As the function Φ is strictly

increasing, this relation is equivalent to the inequality

a(ϵ) + ϵ− µ1

σ
≤ a(ϵ)− ϵ− µ0

σ

which simplifies as ϵ ≤ µ1−µ0
2

. Therefore, (−∞, a(ϵ)) is an adversarial Bayes classifier iff

ϵ ≤ µ1−µ0
2

and R, ∅ are adversarial Bayes classifiers iff ϵ ≥ µ1−µ0
2

.

B.11.2 Further details of Example 42

The constant k = ln (1−λ)σ1
λσ0

will feature prominently in subsequent calculations, notice that

the assumption λ
σ1
> 1−λ

σ0
implies that k < 0. The equation Equation (3.8b) requires solving

1−λ
σ0
e−(b+ϵ)2/2σ2

0 = λ
σ1
e−(b−ϵ)2/2σ2

1 , with solutions Equation (3.14) and

y(ϵ) =

ϵ
(

1
σ2
1
+ 1

σ2
0

)
−
√

4ϵ2

σ2
0σ

2
1
− 2

(
1
σ2
1
− 1

σ2
0

)
k

1
σ2
1
− 1

σ2
0

. (B.25)

The discriminant is positive as k < 0 and σ0 > σ1. However, one can show that y(ϵ) does not

satisfy the second order necessary condition Equation (3.13b) (see below). Similarly, the only

solution to the necessary conditions Equation (3.8a) and Equation (3.13a) is a(ϵ) = −b(ϵ).
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Thus there are five candidate sets for the adversarial Bayes classifier: ∅, R, (−∞, b(ϵ)),

(a(ϵ),+∞) and (a(ϵ), b(ϵ)). Theorem 38 implies that none of these sets could be equivalent

up to degeneracy. By comparing the adversarial classification risks, one can show that

(a(ϵ), b(ϵ)) has the strictly smallest adversarial classification risk from these five options (see

Appendix B.11.2). Therefore, (a(ϵ), b(ϵ)) is the adversarial Bayes classifier for all ϵ.

It remains to verify two of the claims above— namely, 1) that y(ϵ) does not satisfy the

second order necessary condition Equation (3.13b), and 2) Proving that (a(ϵ), b(ϵ)) is always

the adversarial Bayes classifier by comparing the risks of (a(ϵ), b(ϵ), R, ∅, (a(ϵ),∞), and

(−∞, b(ϵ)).

1) The point y(ϵ) does not satisfy the second order necessary condition

Equation (3.13b)

First, notice that

y(ϵ) ≤
ϵ
(

1
σ2
1
+ 1

σ2
0

)
−
√

4ϵ2

σ2
0σ

2
1

1
σ2
1
− 1

σ2
0

=
ϵ
(

1
σ2
1
+ 1

σ2
0

)
− 2ϵ

σ0σ1

1
σ2
1
− 1

σ2
0

(B.26)

This bound shows that y(ϵ) fails to satisfy the second order necessary condition Equa-

tion (3.13b). One can compute the derivative p′i in terms of pi using Lemma 164. Specifically,

p′i(x) =
−x
σ2
i
pi(x) and therefore

p′0(y(ϵ) + ϵ)− p′1(y(ϵ)− ϵ) = −y(ϵ) + ϵ

σ2
0

p0(y(ϵ) + ϵ) +
y(ϵ)− ϵ

σ2
1

p1(y(ϵ)− ϵ)

The first order condition p0(y(ϵ) + ϵ)− p1(y(ϵ)− ϵ) = 0 implies

p′0(y(ϵ) + ϵ)− p′1(y(ϵ)− ϵ) = p0(y(ϵ) + ϵ)

(
y(ϵ)

(
1

σ2
1

− 1

σ2
0

)
− ϵ

(
1

σ2
1

+
1

σ2
0

))
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However, Equation (B.26) implies that

p0(y(ϵ) + ϵ)

(
y(ϵ)

(
1

σ2
1

− 1

σ2
0

)
− ϵ

(
1

σ2
1

+
1

σ2
0

))
≤ p0(y(ϵ) + ϵ) · −2ϵ

σ0σ1
< 0

Thus, the only solution to first Equation (3.8b) and Equation (3.13b) is b(ϵ).

2) Comparing the risks of (a(ϵ), b(ϵ)), R, ∅, (a(ϵ),∞), and (−∞, b(ϵ))

First, we argue that Rϵ ((a(ϵ),∞)) > Rϵ ((a(ϵ), b(ϵ)):

Rϵ((a(ϵ),∞))−Rϵ((a(ϵ), b(ϵ))) =

∫ +∞

b(ϵ)+ϵ

p0(x)− p1(x)dx−
∫ b(ϵ)+ϵ

b(ϵ)−ϵ
p1(x)dx

=

∫ ∞

b(ϵ)

p0(x+ ϵ)− p1(x− ϵ)dx

(B.27)

The same calculation that solves for b(ϵ) in Equation (3.14) and y(ϵ) in Equation (B.25)

then shows that p0(x+ ϵ)− p1(x− ϵ) is strictly positive when x > b(ϵ).

Additionally, Rϵ((a(ϵ),+∞)) = Rϵ((−∞, b(ϵ))) because a(ϵ) = −b(ϵ) and p0, p1 are sym-

metric around zero. Furthermore, by writing out the integrals as in the first line of Equa-

tion (B.27), one can show that Rϵ(R) − Rϵ((−∞, b(ϵ))) = Rϵ((a(ϵ),∞)) − Rϵ((a(ϵ), b(ϵ))).

Thus

Rϵ(R)−Rϵ((a(ϵ), b(ϵ))) = 2(Rϵ((a(ϵ),∞))−Rϵ((a(ϵ), b(ϵ))) > 0

and hence one can conclude thatRϵ((a(ϵ), b(ϵ))) < Rϵ(R) andRϵ((a(ϵ), b(ϵ))) < Rϵ((−∞, b(ϵ))).

Similarly, one can show that

Rϵ(∅)−Rϵ((a(ϵ), b(ϵ))) = 2(Rϵ((a(ϵ),∞))−Rϵ((a(ϵ), b(ϵ)))) > 0

and thus Rϵ(∅) > Rϵ((a(ϵ), b(ϵ))).
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B.11.3 Proof of Lemma 43

Lemmas 158 and 160 of Appendix B.9.1 are used in the proof of Lemma 43.

Proof of Lemma 43. Without loss of generality one can assume that A is a union of open

intervals due to Lemma 52.

There is nothing to show if suppP = R.

We now consider smaller support— for concreteness, we will assume that suppP = [ℓ,∞),

the cases suppP = [ℓ, r], suppP = (−∞, r] have analogous reasoning.

Let

i∗ = argmin
ai≥ℓ

ai − ℓ

j∗ = argmin
bi≥ℓ

bi − ℓ

We will now consider four cases:

I) |ℓ − ai∗| ≤ |ℓ − bj∗ | and ai∗ > ℓ + ϵ; in which case A′ = (ai∗ ,+∞) ∩ A is the desired

adversarial Bayes classifier

II) |ℓ − ai∗| ≤ |ℓ − bj∗| and ai∗ ≤ ℓ + ϵ; in which case A′ = (−∞, ai∗ ] ∪ A is the desired

adversarial Bayes classifier

III) |ℓ − ai∗| > |ℓ − bj∗| and bj∗ > ℓ + ϵ; in which case A′ = (−∞, bj∗) ∪ A is the desired

adversarial Bayes classifier

IV) |ℓ − ai∗| > |ℓ − bj∗| and bj∗ ≤ ℓ + ϵ; we will show A′ = (bj∗ ,∞) ∩ A is the desired

adversarial Bayes classifier

We will show Items I) and II), the arguments for Items III) and IV) is analogous.

Item I): First, we argue that A and A′ are equivalent. Lemma 160 implies that (−∞, ℓ−ϵ]

is a degenerate set. Next, there can be at most one point of ∂A in [ℓ − ϵ, ℓ] because A is
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regular. By the definition of i∗, if there is some point of ∂A in [ℓ− ϵ, ℓ], that point must be

bi∗−1.

• If bi∗−1 ̸∈ [ℓ− ϵ, ℓ], then A′ = A− (−∞, ℓ− ϵ] and thus A and A′ are equivalent.

• If bi∗−1 ∈ [ℓ− ϵ, ℓ], then Lemma 158 implies that [ℓ− ϵ, bi∗−1] is a degenerate set, and

thus A′ = A− ((−∞, ℓ− ϵ] ∪ [ℓ− ϵ, bi∗−1]) and consequently A and A′ are equivalent.

Next, we show that A′ := (ai∗ ,∞) ∩ A is a regular set. Because A is regular, the

point ai∗ is more than 2ϵ from any other boundary point of ∂A. As ∂((ai∗ ,+∞) ∩ A) ⊂

∂(−∞, ai∗) ∪ ∂A = ∂A, the point a∗i must be more than 2ϵ from any other boundary point

of (ai∗ ,+∞) ∩ A. Therefore, A′ is regular.

The assumption ai∗ > ℓ + ϵ implies that A′ ⊂ (ℓ + ϵ + δ,+∞) for some δ > 0 and

consequently A′ can only have boundary points in (ℓ+ ϵ,+∞) = int suppP−ϵ.

Finally, A′ is open as it is the intersection of open sets.

Item II): First, we argue that A and A′ are equivalent. Lemmas 158 and 160 imply

that the sets (−∞, ℓ− ϵ] and [ℓ− ϵ, ai∗ ] are degenerate sets for A. Therefore, A and A′ are

equivalent up to degeneracy.

Next, the same argument as Item I) shows that A′ = A ∪ (−∞, ai∗ ] is a regular set:

∂(A∪ (−∞, ai∗ ]) ⊂ ∂A∪∂(−∞, ai∗ ] = ∂A. Thus the boundary points of A′ must be at least

2ϵ apart because A is regular.

Further, the set A′ is open because (−∞, ai∗ ] ∪ (ai∗ , bi∗) = (−∞, bi∗) and consequently,

A′ = (−∞, bi∗) ∪ A.

Finally, to show that ∂A′ ⊂ int suppP−ϵ, we argue that A′ has no boundary points in

(−∞, ℓ + ϵ] = (int suppP−ϵ)C . As (−∞, bi∗) ⊂ A′, the set A′ has no boundary points in

(−∞, bi∗ ]. However, the interval (−∞, bi∗ ] contains (−∞, ℓ + ϵ] as bi∗ − ai∗ > 2ϵ because A

is regular.
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B.11.4 Example 45 details

Theorem 37 implies that when ϵ < 1/2 the candidate solutions for the ai, bi are [−ϵ, ϵ]∪{−1−

ϵ,−1+ϵ, 1−ϵ,1+ϵ}. However, Lemma 43 implies that one only needs to consider points ai, bi

in [−ϵ, ϵ] when identifying adversarial Bayes classifiers under equivalence up to degeneracy.

However, Rϵ((y,∞)) < Rϵ((−∞, y)) for any y ∈ [−ϵ, ϵ] because p1(x) > p0(x) for x > ϵ

while p1(x)− p0(x) < 0 for any x < −ϵ. Thus, the candidate sets for the adversarial Bayes

classifier are R, ∅, and (y,∞) for any y ∈ [−ϵ, ϵ]. Next, any point y ∈ [−ϵ, ϵ] achieves the

same risk: Rϵ((y,∞)) = ϵ+ 1
4
(1− ϵ) while Rϵ(R) = Rϵ(∅) = 1/2. Thus ∅,R are adversarial

Bayes classifiers when ϵ ∈ [1/3, 1/2) and (y,∞) is an adversarial Bayes classifier only when

ϵ ≤ 1/3. Thus Theorem 39 implies that (y,∞) is an adversarial Bayes classifier for any

y ∈ [−ϵ, ϵ] iff ϵ ≤ 1/3 while R, ∅ are adversarial Bayes classifiers iff ϵ ≥ 1/3.

B.11.5 Example 46 details

It remains to compare the adversarial risks of all sets whose boundary is included in {−1/4±

ϵ, 1/4 ± ϵ} for all ϵ > 0. As points in the boundary of a regular adversarial Bayes classifier

must be more than 2ϵ apart, the boundary of a regular adversarial Bayes classifier can include

at most one of {−1
4
− ϵ,−1

4
+ ϵ} and at most one of {1

4
− ϵ, 1

4
+ ϵ}. Let S be the set of open

sets with at most one boundary point in {−1
4
− ϵ,−1

4
+ ϵ}, at most one boundary point in

{1
4
− ϵ, 1

4
+ ϵ}, and no other boundary points.

Instead of explicitly computing the adversarial risk of each set in S, we will rule out

most combinations by understanding properties of such sets, and then comparing to the

adversarial risk of R, for which Rϵ(R) = 1/10 for all possible ϵ. We consider three separate

cases:
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When ϵ > 1/4: If a set A includes at least one endpoint in int suppP−ϵ, then

Rϵ(A) ≥ 2ϵ inf
x∈suppP

p(x) ≥ 2ϵ

5
>

1

10
= Rϵ(R)

The only two sets in S that have no endpoints in int suppP−ϵ are R and ∅, but Rϵ(∅) = 9/10.

Thus if ϵ > 1/4, then R is an adversarial Bayes classifier, and this classifier is unique up to

degeneracy.

When 1/8 ≤ ϵ ≤ 1/4: If either 1/4 + ϵ,−1/4− ϵ are in the boundary of a set A, then

Rϵ(A) ≥
∫ y+ϵ

y−ϵ
p(x)dx =

3

5
· 2ϵ ≥ 3

20
> Rϵ(R).

(The value y above is either 1/4 + ϵ or −1/4− ϵ.) Consequently, for these values of ϵ, only

sets in S with at most one endpoint in {−1/4 + ϵ} and at most one endpoint in {1/4 − ϵ}

can be adversarial Bayes classifiers.

Next, if a set A in S excludes either (−∞,−1/4) or (1/4,∞), then

Rϵ(A) ≥
∫
S

p1(x)dx ≥ 3

5
· 3
4
> Rϵ(R).

(The set S above represents either (−∞,−1/4) or (1/4,∞).) As a result, such a set cannot

be an adversarial Bayes classifier.

However, R and (−∞,−1/4 + ϵ) ∪ (1/4 − ϵ,∞) are the only two sets in S with at

most one endpoint in {−1/4 + ϵ} and at most one endpoint in {1/4 − ϵ}, that include

(−∞,−1/4) ∪ (1/4,∞). The set (−∞,−1/4 + ϵ) ∪ (1/4 − ϵ,∞) is not a regular set when

ϵ ≥ 1/8. Consequently, When ϵ ∈ (1/8, 1/4], the set R is an adversarial Bayes classifier, and

this classifier is unique up to degeneracy.
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When ϵ < 1/8 : First, if A excludes [−1− ϵ,−1/4− ϵ) or (1/4 + ϵ, 1 + ϵ], then

Rϵ(A) ≥ 3

5
· (3
4
− ϵ) ≥ 3

5
· (3
4
− 1

8
) =

3

8
> Rϵ(R).

There are only five sets in S that satisfy this requirement: A1 = (−∞,−1/4+ϵ)∪(1/4−ϵ,∞),

A2 = (−∞,−1/4−ϵ)∪(1/4−ϵ,∞), A3 = (−∞,−1/4+ϵ)∪(1/4+ϵ,∞), A4 = (−∞,−1/4−

ϵ)∪ (1/4+ ϵ,∞), and A5 = R. All of these sets are regular when ϵ < 1/8. One can compute:

Rϵ(A1) =
4ϵ

5
, Rϵ(A2) = Rϵ(A3) =

8ϵ

5
, and Rϵ(A4) =

6

5
ϵ

Of these five alternatives, the set A1 has the strictly smallest risk when ϵ ∈ (0, 1/8). Conse-

quently, when ϵ ∈ (0, 1/8), the set A1 is the adversarial Bayes classifier and is unique up to

degeneracy.

B.11.6 Proof of Proposition 49

Proof of Proposition 49. Due to Theorem 35 and Lemma 43, any adversarial Bayes classifier

is equivalent up to degeneracy to a regular adversarial Bayes classifier A =
⋃M
i=m(ai, bi) for

which all the finite ai and bi are contained in int suppP−ϵ. Consequently, if there is some ai

or bi in int suppP−ϵ, then ϵ < | suppP|/2.

For every point x in int suppP−ϵ, the densities p0 and p1 are both continuous at x − ϵ

and x+ ϵ. Consequently, the necessary conditions Equation (3.8) reduce to

η(a+ ϵ) = 1− η(a− ϵ) (B.28a) η(b− ϵ) = 1− η(b+ ϵ) (B.28b)

on this set. If a is more than ϵ away from a point z satisfying η(z) = 1/2, the continuity

of η implies that η(a+ ϵ), η(a− ϵ) are either both strictly larger than 1/2 or strictly smaller

than 1/2, and thus a would not satisfy Equation (B.28a). As a result, every ai must be

within ϵ of a solution to η(z) = 1/2. An analogous argument shows that the same holds for

solutions to Equation (B.28b).
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B.11.7 Proof of Proposition 50

Proof of Proposition 50. Due to Theorem 35 and Lemma 43, any adversarial Bayes classifier

is equivalent up to degeneracy to a regular adversarial Bayes classifier A =
⋃M
i=m(ai, bi) for

which all the finite ai and bi are contained in int suppP−ϵ. Consequently, if there is some ai

or bi in int suppPϵ, then ϵ < | suppP|/2.

For contradiction, assume that ai is not within ϵ of any point in ∂{η = 1}. Then for some

r > 0, η is either identically 1 or identically 0 on (ai(ϵ)−ϵ−r, ai(ϵ)+ϵ+r) and thus p1 = pη is

continuous on this set. Furthermore, because ai ∈ int suppP−ϵ but ϵ < | suppP|/2, p1(ai+ ϵ)

is strictly positive while p0(ai − ϵ) = 0. Consequently, a(ϵ) cannot satisfy the necessary

condition Equation (3.8a), thus contradicting Theorem 37.

B.11.8 Example 69 details

It remains to compare the risks of all regular sets with endpoints in {−7
2
,−5

2
ϵ,−3

2
ϵ,−1

2
ϵ,+1

2
ϵ,

+3
2
ϵ,+5

2
ϵ,+7

2
ϵ}, and show that R is indeed an adversarial Bayes classifier. Rather than

explicitly writing out all such sets and computing their adversarial risks, we show that one

need not consider certain sets in S because if they were adversarial Bayes classifiers, they

would be equivalent up to degeneracy to other sets in S.

First, Lemma 158 with I = [−5
2
ϵ,+5

2
ϵ] implies that if A is a regular adversarial Bayes

classifier and y ∈ {−7
2
ϵ,−5

2
ϵ,−3

2
ϵ} is in ∂A, then [−7

2
ϵ, y] is a degenerate set. Thus there is no

need to consider classifiers with endpoints in {−7
2
ϵ,−5

2
ϵ,−3

2
ϵ} when identifying all possible

adversarial Bayes classifiers under equivalence up to degeneracy. Similarly, Lemma 158 also

implies that there is no need to consider {+3
2
ϵ,+5

2
ϵ,+7

2
ϵ} as possible values of the ais or

bis. Thus it remains to compare the risks of regular sets whose boundary is contained in

{−1
2
ϵ,−1

2
ϵ}. As points in the boundary of a regular set are at least 2ϵ apart, one can rule

out sets with more than one boundary point in {−1
2
ϵ,+1

2
ϵ}.
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Consequently, it remains to compare the adversarial risks of six sets: R, ∅, (−1
2
ϵ,+∞),

(−∞,−1
2
ϵ), (+1

2
ϵ,+∞), and (−∞,+1

2
ϵ). The adversarial risks of these sets are:

Rϵ(R) =
14

25
Rϵ(∅) = 11

25

Rϵ

(
(−1

2
ϵ,+∞)

)
= Rϵ

(
(+

1

2
ϵ,+∞)

)
=

21

25

Rϵ

(
(−∞,−1

2
ϵ)

)
= Rϵ

(
(−∞,+

1

2
ϵ)

)
=

9

25

Therefore, the set (−∞,−1
2
ϵ) is an adversarial Bayes classifier.
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C — Deferred Proofs from

Chapter 4

C.1 An Alternative Characterization of

Consistency– Proof of Proposition 71

First, prior work computes the minimum standard ϕ-risk.

Lemma 165. Let ϕ be any monotonic loss function. Then

inf
f measurable

Rϕ(f) =

∫
C∗
ϕ(η)dP

This result appears on page 4 of [8]. Notice that Lemma 165 is Theorem 78 with ϵ = 0.

Next, one can use the following lemma to compare minimizing sequences of Cϕ(η, ·) and

C(η, ·).

Lemma 166. Assume that Assumption 2 holds, ϕ is consistent, and 0 ∈ argminCϕ(η, ·).

Then η = 1/2.

Proof. Consider a distribution for which η(x) ≡ η is constant. Then Rϕ(f) = Cϕ(η, f) and

R(f) = C(η, f). The consistency of ϕ implies that if 0 minimizes Cϕ(η, ·), then it also must

minimize C(η, ·) and therefore η ≤ 1/2.
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However, notice that Cϕ(η, α) = Cϕ(1 − η,−α). Thus if 0 minimizes Cϕ(η, ·) it must

also minimize Cϕ(1 − η, ·). The consistency of ϕ then implies that 1 − η ≤ 1/2 as well and

consequently, η = 1/2.

We use this result to prove Proposition 71 together with a standard argument from

analysis:

Lemma 167. Let {an} be a sequence in R ∪ {∞}. Then the following are equivalent:

1) limn→∞ an = a

2) Every subsequence {anj} of {an} has a subsequence {ajk} for which limk→∞ ajk = a

As a result:

Corollary 168. If every minimizing sequence fn of Rϕ has a subsequence fnj that minimizes

R, then ϕ is consistent.

Furthermore, this corollary can be applied to a distribution with constant η(x) to con-

clude:

Corollary 169. If every minimizing sequence αn for Cϕ(η, ·) has a subsequence αnj that

minimizes C(η, ·) then one can conclude that every minimizing sequence is of Cϕ(η, ·) is also

a minimizing sequence of C(η, ·).

We now prove a result slightly stronger than Proposition 71.

Theorem 170. The following are equivalent:

1) For all distributions, fn is a minimizing sequence of Rϕ implies that fn is a minimizing

sequence of R.

2) For all η ∈ [0, 1], αn is a minimizing sequence of Cϕ(η, ·) implies that αn is a minimizing

sequence of C(η, ·).
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3) Every minimizer of Cϕ(η, ·) is also a minimizer of C(η, ·).

4) Every minimizer of Rϕ is a minimizer of R

The proof is essentially the “pointwise” argument discussed in Section 4.3.

Proof. We show that 1) ⇔ 2), 2) ⇔ 3), and 3) ⇔ 4).

Showing 1) is equivalent to 2):

To show that 1) implies 2), consider a distribution for which η(x) ≡ η is constant.

For the other direction, let fn be any minimizing sequence of Rϕ. Then Cϕ(η, fn) ≥ C∗
ϕ(η)

and Lemma 165 implies that the sequence Cϕ(η, fn) actually converges to C∗
ϕ(η) in L1(P).

Thus one can pick a subsequence fnj for which Cϕ(η, fnj) converges to C
∗
ϕ(η) P-a.e. (See for

instance Corollary 2.32 of [22]). Then 2) implies that the function sequence fnj minimizes

C(η, ·) and therefore it also minimizes R by Corollary 168.

Showing 2) is equivalent to 3):

To show that 2) implies 3), notice that if α is a minimizer of Cϕ(η, ·), 2) immediately implies

that the sequence αn ≡ α also minimizes C(η, ·).

For the other direction, assume that every minimizer of Cϕ(η, ·) is also a minimizer of

C(η, ·). Let αn be a minimizing sequence of Cϕ(η, ·). Over the extended real numbers R,

αn has a subsequence αnj that converges to a limit point a, which must be a minimizer of

Cϕ(η, ·). Now if a ̸= 0, both 1α≤0,1α>0 are continuous at a so that one can conclude that

αnj also minimizes C(η, ·). If in fact a = 0, Lemma 166 implies that η = 1/2 and thus any

α minimizes C(1/2, ·). Thus Corollary 169 implies that αn minimizes C(η, ·).

198



Showing 3) is equivalent to 4)

To show that 4) implies 3), consider a distribution for which η(x) ≡ η is constant.

For the other direction, let f ∗ be a minimizer of Rϕ. Then Cϕ(η(x), f
∗(x)) ≥ C∗

ϕ(η(x)) but

Rϕ(f
∗) =

∫
C∗
ϕ(η)dP by Lemma 165. Therefore Cϕ(η(x), f

∗(x)) = C∗
ϕ(η(x)) P-a.e. Item 3)

then implies the result.

C.2 Minimizing Rϵ
ϕ over real valued functions

In this appendix, we will show

Lemma 171. Let Rϵ
ϕ be defined as in (4.7). Then

inf
f Borel,
f R-valued

Rϵ
ϕ(f) = inf

f Borel,
f R-valued

Rϵ
ϕ(f)

Integrals of functions assuming values in R ∪ {∞} can still be defined using standard

measure theory, see for instance [22].

Recall that [25] originally proved their minimax result for R-valued functions and thus

this lemma is essential for the statement of Theorem 78.

Proof of Lemma 171. Let f be an R-valued function for with Rϵ
ϕ(f) <∞. We will show that

the truncation fN = min(max(f,−N), N) satisfies limN→∞Rϵ
ϕ(fN) = Rϵ

ϕ(f). Lemma 171

then follows from this statement.

Define a function σ[a,b] : R → [a, b] by

σ[a,b](α) =


b α > b

α α ∈ [a, b]

a α < a
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Notice that σ[a,b](−α) = −σ[−b,−a](α). Thus if a = −b, then σ[a,b] is anti-symmetric. Further-

more, because ϕ is continuous and non-increasing, for any function g,

ϕ(σ[a,b](g)) = σ[ϕ(b),ϕ(a)](ϕ(g))

and as σ[a,b](α) is continuous and non-decreasing,

Sϵ(σ[a,b](g)) = σ[a,b](Sϵ(g))

Now let fN = σ[−N,N ](f). Then Sϵ(ϕ ◦ fN), Sϵ(ϕ ◦ −fN) satisfy

Sϵ(ϕ(fN)) = σ[ϕ(N),ϕ(−N)](Sϵ(ϕ ◦ f)), Sϵ(ϕ(−fN)) = σ[ϕ(N),ϕ(−N)](Sϵ(ϕ ◦ −f))

Therefore, Sϵ(ϕ◦fN) ,Sϵ(ϕ◦−fN) converge pointwise to Sϵ(ϕ◦f), Sϵ(ϕ◦−f). Furthermore,

for N ≥ 1, ϕ(fN) ≤ ϕ(f) + ϕ(1) which is integrable with respect to P1. Similarly, ϕ(−fN) ≤

ϕ(−f) + ϕ(1) which is integrable with respect to P0. Therefore, the dominated convergence

theorem implies that

lim
N→∞

Rϵ
ϕ(fN) = Rϵ

ϕ(f)
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C.3 Further Properties of Adversarially

Consistent Losses– Proofs of Lemma 75,

Lemma 81, and Proposition 74

Recall the condition C∗
ϕ(1/2) < ϕ(0) implies that minimizers of Cϕ(1/2, α) are bounded away

from zero. Lemma 172 states that this property actually holds for all η. To prove this fact,

we decompose Cϕ(η, α) into Cϕ(1/2, α) and a monotonic function:

Cϕ(η, α) = ηϕ(α) + (1− η)ϕ(−α) = (η − 1/2)(ϕ(α)− ϕ(−α)) + 1

2
(ϕ(α) + ϕ(−α)). (C.1)

Lemma 172. Assume that C∗
ϕ(1/2) < ϕ(0). Then there exists an a > 0 for which |α| < a

implies Cϕ(η, α) ̸= C∗
ϕ(η) for all η. This a satisfies ϕ(a) < ϕ(0).

Proof. Let S be the set of non-negative minimizers of Cϕ(1/2, ·) and define a = inf S. Because

ϕ is continuous, a is also a minimizer of Cϕ(1/2, ·) and thus Cϕ(1/2, a) = C∗
ϕ(1/2) < ϕ(0) =

Cϕ(1/2, 0). Therefore, ϕ(a) < ϕ(0) follows from the fact that ϕ(−a) ≥ ϕ(0).

We will now show that Cϕ(η, ·) does not achieve its optimum on (−a, a) for any η.

First, this statement holds for η = 1/2 due to the definition of a. Next, we will assume

that η > 1/2, the case η < 1/2 is analogous. To start, we can decompose the quantity

Cϕ(η, α) as in (C.1). Subsequently, because a is the smallest positive minimizer of Cϕ(1/2, ·),

1/2(ϕ(α) + ϕ(−α)) assumes its infimum over [−a, a] only at −a and a. Next, notice that

ϕ(α) − ϕ(−α) is non-increasing on [−a, a]. Furthermore, because ϕ(a) < ϕ(0), one can

conclude that ϕ(−a)− ϕ(a) > 0 > ϕ(a)− ϕ(−a), and thus the function α 7→ ϕ(α)− ϕ(−α)

is non-constant on [−a, a]. Therefore, (C.1) achieves its optimum over [−a, a] only at α = a.

Thus, any α ∈ (−a, a) cannot be a minimizer of Cϕ(η, ·) because Cϕ(η, α) > Cϕ(η, a) ≥

C∗
ϕ(η).
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Proof of Lemma 75. Lemma 172 (above) immediately implies the forward direction.

For the backwards direction, note that if there is an a for which |α∗| ≥ a for any minimizer

Cϕ(η, ·) for all η, then 0 does not minimize Cϕ(1/2, ·). Therefore C∗
ϕ(1/2) < Cϕ(1/2, 0) =

ϕ(0).

Proof of Proposition 74. We will argue that for each η, every minimizer of Cϕ(η, ·) over R

is also a minimizer of C(η, ·). Proposition 71 will then imply that ϕ is consistent. To start,

notice that every α is a minimizer of C(1/2, ·). Next, we will show that for η > 1/2, every

minimizer of Cϕ(η, ·) is also a minimizer of C(η, ·). The argument for η < 1/2 is analogous.

Consider the decomposition of Cϕ(η, α) in (C.1). Let a be as in Lemma 172 and notice

that if α > a then ϕ(α) < ϕ(−α). Hence as η > 1/2, then Cϕ(η, α) < Cϕ(η,−α). Further-

more, Lemma 172 implies that there is no minimizer to Cϕ(η, ·) in (−a, a) and thus every

minimizer to Cϕ(η, ·) must be strictly positive. Therefore, every minimizer of Cϕ(η, ·) also

minimizes C(η, ·).

Next, Lemma 81 is a quantitative version of Lemma 172.

Proof of Lemma 81. Let a be as in Lemma 172 and define ϕ− by

ϕ−(y) = sup{α : ϕ(α) ≥ y}.

The function ϕ− is the right inverse of ϕ— this function satisfies ϕ(ϕ−(y)) = y while

ϕ−(ϕ(α)) ≥ α.

Set k = 1/2(ϕ(0) + ϕ(a)), c = ϕ−(k) = sup{α : ϕ(α) ≥ k}. From the definition of c, one

can conclude that α > c implies that ϕ(α) < ϕ(c).
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Because ϕ(a) < k = ϕ(c) < ϕ(0) and ϕ is non-increasing, 0 < c < a. Thus [−c, c] ⊂

(−a, a) and Lemma 172 implies that for all α ∈ [−c, c] and η ∈ [0, 1], Cϕ(η, α)− C∗
ϕ(η) > 0.

As this expression is jointly continuous in the variables η, α and [−c, c] × [0, 1] is compact,

one can define

δ = inf
α∈[−c,c]
η∈[0,1]

Cϕ(η, α)− C∗
ϕ(η)

and then it holds that δ > 0 and Cϕ(η, α) ≥ C∗
ϕ(η) + δ for all α ∈ [−c, c].

C.4 Optimal Transport Facts— Proof of Lemma 76

Proof of Lemma 76. Let Q′ be any measure with W∞(Q′,Q) ≤ ϵ. Let γ be a coupling

with marginals Q and Q′ for which ess sup(x,y)∼γ ∥x − y∥ ≤ ϵ. Such a coupling exists by

Theorem 2.6 of [33]. This measure γ is supported on ∆ϵ = {(x,y) : ∥x− y∥ ≤ ϵ}. Then

∫
gdQ′ =

∫
g(x′)dγ(x,x′) =

∫
g(x′)1∥x′−x∥≤ϵdγ(x,x

′)

≤
∫
Sϵ(g)(x)1∥x′−x∥≤ϵdγ(x,x

′) =

∫
Sϵ(g)(x)dγ(x,x

′) =

∫
Sϵ(g)dQ

C.5 Proof of Theorem 77

As observed in Section 4.5, the ρ-margin loss satisfies Rϵ
ϕρ
(f) ≥ Rϵ(f) while C∗

ϕρ
(η) = C∗(η).

Theorem 78 then implies that

sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) = sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄ϕρ(P′
0,P′

1) = inf
f
Rϵ
ϕρ(f) ≥ inf

f
Rϵ(f)
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The opposite inequality follows from swapping an inf and a sup— a form of weak duality.

We prove this weak duality for R = R∪{−∞,+∞}-valued functions in order to later apply

a result from [25] which is also stated for R-valued functions.

Lemma 173 (Weak Duality). Let Rϵ be the adversarial classification loss. Then

inf
f Borel,
f R-valued

Rϵ(f) ≥ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1) (C.2)

Proof. Notice that Lemma 76 implies that for any function g,

∫
Sϵ(g)dQ ≥ sup

Q′∈B∞
ϵ (Q)

∫
gdQ′.

Applying this inequality to the functions 1f≤0,1f>0 in the expression for Rϵ(f) results in

∫
Sϵ(1f≤0)dP1 +

∫
Sϵ(1f>0)dP0 ≥ sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

∫
1f≥0dP′

1 +

∫
1f<0dP′

0

Thus by swapping the inf and the sup and defining P′ = P′
0 + P′

1, η
′ = dP′

1/dP′,

inf
f Borel

f R-valued

∫
Sϵ(1f≤0)dP1 +

∫
Sϵ(1f>0)dP0 ≥ inf

f Borel
f R-valued

sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

∫
1f≤0dP′

1 +

∫
1f>0dP′

0

≥ sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
f Borel

f R-valued

∫
1f≤0dP′

1 +

∫
1f>0dP′

0

= sup
P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

inf
f Borel

f R-valued

∫
C(η′, f)dP′ ≥ sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

∫
C∗(η′)dP′ = sup

P′
0∈B∞

ϵ (P0)
P′
1∈B∞

ϵ (P1)

R̄(P′
0,P′

1)

Strong duality and existence of maximizers/minimizers then follows from weak duality.

Proof of Theorem 77. Let ϕρ(α) be the ϕ-margin loss ϕρ = min(1,max(1−α/ρ, 0)). Then as
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discussed in Section 4.5, one can bound the adversarial classification risk Rϵ(f) by Rϵ(f) ≤

Rϵ
ϕρ
(f) but C∗

ϕρ
(η) = C∗(η) and thus R̄ϕρ = R̄.

The minimax theorem for surrogate losses in [25] (Theorem 6) states that there is an

R-valued function f ∗, and measures P∗
0,P∗

1 for which Rϵ
ϕρ
(f ∗) = R̄ϕρ(P∗

0,P∗
1). Thus weak

duality (Lemma 173) implies

R̄ϕρ(P∗
0,P∗

1) = R̄(P∗
0,P∗

1) ≤ Rϵ(f ∗) ≤ Rϵ
ϕρ(f

∗).

However, the fact that Rϵ
ϕρ
(f ∗) = R̄ϕρ(P∗

0,P∗
1) implies that the inequalities above must actu-

ally be equalities. This relation proves strong duality for the adversarial classification risk

(Equation 4.9) and that f ∗ minimizes Rϵ and (P∗
0,P∗

1) maximizes R̄ over B∞
ϵ (P0)× B∞

ϵ (P1).

Next, let f̂ = min(1,max(f̂ ,−1)). Then f̂ is R-valued and Rϵ(f̂) = Rϵ(f ∗). Thus f̂ is

an R-valued minimizer of Rϵ.

C.6 Proof of Lemma 82

Proof of Lemma 82. Lemma 76 implies that for each n,

∫
Sϵ(1fn≤0)dP1 ≥

∫
1fn≤0dP∗

1 .

Therefore, writing ℓn =
∫
Sϵ(1fn≤0)dP1 and rn =

∫
1fn≤0dP∗

1, we have

lim inf
n→∞

rn ≤ lim inf
n→∞

ℓn ≤ lim sup
n→∞

ℓn . (C.3)

Therefore, (4.20) implies both that that the limit limn→∞
∫
Sϵ(1fn≤0)dP1 exists and that

lim
n→∞

∫
Sϵ(1fn≤0)dP1 = lim inf

n→∞

∫
1fn≤0dP∗

1 (C.4)
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Similarly, because lim supn→∞ ℓn ≥ lim supn→∞ rn ≥ lim infn→∞ rn, the relation (4.20)

implies that the limit limn→∞
∫
1fn≤0dP∗

1 exists. The first relation of (4.18) then follows

from (C.4) and the existence of the limit of
∫
1fn≤0dP∗

1.

An analogous argument shows that (4.21) implies the second relation of (4.18).
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D — Deferred Proofs from

Chapter 5

D.1 Proof of Lemma 85

Lemma 174. The smallest minimizer of Cϕ(η, ·) is well-defined.

Proof. First, define

αϕ(η) = inf{α ∈ R : α is a minimizer of Cϕ(η, ·)}

This infimum exists because R is closed. Furthermore, the value αϕ(η) is a minimizer of

Cϕ(η, ·) because the loss ϕ is continuous.

The next result implies that αϕ is non-decreasing.

Lemma 175. If α∗
2 is any minimizer of Cϕ(η2, ·) and η2 > η1, then αϕ(η1) ≤ α∗

2.

Proof. One can express Cϕ(η2, α) as

Cϕ(η2, α) = Cϕ(η1, α) + (η2 − η1)(ϕ(α)− ϕ(−α))

Notice that the function α 7→ ϕ(α)− ϕ(−α) is non-increasing in α. As αϕ(η1) is the small-

est minimizer of Cϕ(η1, ·), if α < αϕ(η1) then Cϕ(η1, α) > C∗
ϕ(η1) and thus Cϕ(η2, α) >
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Cϕ(η2, αϕ(η1)). Thus every minimizer of Cϕ(η2, ·) must be greater than or equal to αϕ(η1).

Proof of Lemma 85. Lemma 174 proves that αϕ is well-defined. For η2 > η1, Lemma 175

with the choice α∗
2 = αϕ(η2) proves that the function αϕ is non-decreasing.

D.2 Proof of Lemma 92

Proof of Lemma 92. Let Q′ be a measure in B∞
ϵ (Q), and let γ∗ be a coupling between these

two measures supported on ∆ϵ. Then if (x,x′) ∈ ∆ϵ, then x′ ∈ Bϵ(x) and thus Sϵ(1E)(x) ≥

1E(x
′) γ∗-a.e. Consequently,

∫
Sϵ(1E)(x)dQ1 =

∫
Sϵ(1E)(x)dγ

∗(x,x′) ≥
∫

1E(x
′)dγ∗(x,x′) =

∫
1EdQ′

Taking a supremum over all Q′ ∈ B∞
ϵ (Q) proves the result.

D.3 Proof of Theorem 87

We prove that the sets {η̂ > 1/2} and {η̂ ≥ 1/2} minimize Rϵ
ϕ by showing that Rϵ

ϕ({η̂ >

1/2) = R̄(P∗
0,P∗

1) for the measures P∗
0, P∗

1 in Theorem 95.

Proposition 176. Let η̂ be the function in Theorem 86. Then the sets {η̂ > 1/2}, η̂ ≥ 1/2}

are both Bayes classifiers.

Proof. We prove the statement for {η̂ > 1/2}, the argument for the set {η̂ ≥ 1/2} is

analogous.

Let P∗
0,P∗

1 be the measures of Theorem 95 and set P∗ = P∗
0 + P∗

1, η
∗ = dP∗

1/dP∗. Further-

more, let γ∗0 , γ
∗
1 be the couplings between P0, P∗

0 and P1, P∗
1 supported on ∆ϵ.
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First, Item II) implies that the function η̂(x) assumes its infimum on an ball Bϵ(x) γ
∗
1-a.e.

and therefore Sϵ(1{η̂>1/2}C )(x) = 1{Iϵ(η̂)(x)>1/2}C γ∗1-a.e. (Recall the notation Iϵ was defined

in Equation (5.11).) Item II) further implies that 1{Iϵ(η̂)(x)>1/2}C = 1{η̂(x′)>1/2}C γ∗1-a.e. and

consequently,

Sϵ(1{η̂(x)>1/2}C )(x) = 1{η̂(x′)>1/2}C γ∗1-a.e. (D.1)

An analogous argument shows

Sϵ(1{η̂>1/2})(x) = 1{η̂(x′)>1/2} γ∗0-a.e. (D.2)

Equations (D.1) and (D.2) then imply that

Rϵ({η̂ > 1/2}) =
∫

1{η̂(x′)>1/2}Cdγ
∗
1 +

∫
1{η̂(x′)>1/2}dγ

∗
0

=

∫
1{η̂(x′)>1/2}CdP∗

1 +

∫
1{η̂(x′)>1/2}dP∗

0 =

∫
C(η∗,1{η̂>1/2})dP∗.

Next Item I) of Theorem 95 implies that η̂(x′) = η∗(x′) P∗-a.e. and consequently

Rϵ({η̂ > 1/2}) =
∫
C(η∗,1{η∗>1/2})dP∗ = R̄(P∗

0,P∗
1).

Therefore, the strong duality result in Theorem 93 implies that {η̂ > 1/2} must minimize

Rϵ.

Finally, the complementary slackness conditions from [23, Theorem 2.4] characterize

minimizers of Rϵ and maximizers of R̄, and this characterization proves Equations (5.9)

and (5.10). Verifying these conditions would be another method of proving Proposition 176.

Theorem 177. The set A is a minimizer of Rϵ and (P∗
0,P∗

1) is a maximizer of R̄ over the

W∞ balls around P0 and P1 iff W∞(P∗
0,P0) ≤ ϵ, W∞(P∗

1,P1) ≤ ϵ, and
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1) ∫
Sϵ(1AC )dP1 =

∫
1ACdP∗

1 and

∫
Sϵ(1A)dP0 =

∫
1AdP∗

0 (D.3)

2)

C(η∗,1A(x
′)) = C∗(η∗(x′)) P∗-a.e. (D.4)

where P∗ = P∗
0 + P∗

1 and η∗ = dP∗
1/dP∗.

Let γ∗0 , γ
∗
1 be couplings between P0, P∗

0 and P1, P∗
1 supported on ∆ϵ. Notice that be-

cause Lemma 92 implies that 1AC (x
′) ≤ Sϵ(1AC )(x) γ

∗
1-a.e. and 1A(x

′) ≤ Sϵ(1A)(x), the

complementary slackness condition in Equation (D.3) is equivalent to

Sϵ(1AC )(x) = 1AC (x
′) γ∗1-a.e. and Sϵ(1A)(x) = 1A(x

′) γ∗0-a.e. (D.5)

This observation completes the proof of Theorem 87.

Proof of Theorem 87. First, Proposition 176 proves that the sets {η̂ > 1/2} and {η̂ ≥ 1/2}

are in fact adversarial Bayes classifiers.

Next, let η̂, P∗
0, P∗

1 be the function and measures of Theorem 95. Let P∗ = P∗
0 + P∗

1,

η∗ = dP∗
1/dP∗, and let γ∗0 , γ

∗
1 be couplings between P0, P∗

0 and P1, P∗
1 supported on ∆ϵ. If

A is any adversarial Bayes classifier, the complementary slackness condition Equation (D.4)

implies that 1η∗>1/2 ≤ 1A ≤ 1η∗≥1/2 P∗-a.e. Thus Item I) implies that

1{η̂>1/2}(x
′) ≤ 1A(x

′) ≤ 1{η̂≥1/2}(x
′) γ∗0-a.e.

and

1{η̂>1/2}C (x
′) ≤ 1AC (x

′) ≤ 1{η̂≥1/2}C (x
′) γ∗1-a.e.

The complementary slackness condition Equation (D.5) then implies Equations (5.9) and (5.10).
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D.4 Proof of Theorem 97

Theorem 3.4 of [23] proves the following result:

Theorem 178. Assume that P is absolutely continuous with respect to Lebesgue measure.

Then the following are equivalent:

1) The adversarial Bayes classifier is unique up to degeneracy

2) Amongst all adversarial Bayes classifiers A, the value of
∫
Sϵ(1A)dP0 is unique or the

value of
∫
Sϵ(1AC )dP1 is unique

Thus it remains to show that Item 2) of Theorem 178 is equivalent to Item B) of Theo-

rem 97. We will apply the complementary slackness conditions of Theorem 177.

Proof of Theorem 97. Let P∗
0, P∗

1 be the measures of Theorem 95.

First, we show that Item 2) implies Item B). Assume that Item 2) holds. Notice that for

an adversarial Bayes classifier A,

∫
Sϵ(1A)dP0 +

∫
Sϵ(1AC )dP1 = Rϵ

∗

where Rϵ
∗ is the minimal value of Rϵ. Thus amongst all adversarial Bayes classifiers A, the

value of
∫
Sϵ(1A)dP0 is unique iff the value of

∫
Sϵ(1AC )dP1 is unique. Thus Item 2) implies

both
∫
Sϵ(1A1)dP0 =

∫
Sϵ(1A2)dP0 and

∫
Sϵ(1AC1 )dP1 =

∫
Sϵ(1AC2 )dP1 for any two adversarial

Bayes classifiers A1 and A2.

Consequently, Item 2) of Theorem 178 and the fact that {η̂ > 1/2} ⊂ {η̂ ≥ 1/2} imply

that

Sϵ(1{η̂>1/2}C ) = Sϵ(1{η̂≥1/2}C ) P1-a.e. and Sϵ(1{η̂>1/2}) = Sϵ(1{η̂≥1/2}) P0-a.e.
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The complementary slackness condition Equation (D.3) implies that

∫
1{η̂>1/2}CdP∗

1 =

∫
1{η̂≥1/2}CdP∗

1 and

∫
1{η̂>1/2}dP∗

0 =

∫
1{η̂≥1/2}dP∗

0

and subsequently, Item I) of Theorem 95 implies that

∫
1{η∗>1/2}CdP∗

1 =

∫
1{η∗≥1/2}CdP∗

1 and

∫
1{η∗>1/2}dP∗

0 =

∫
1{η∗≥1/2}dP∗

0.

Consequently, P∗(η∗ = 1/2) = 0.

To show the other direction, we apply the inequalities in Theorem 87. The complimentary

slackness conditions in Theorem 177 and the first inequality in Theorem 87 imply that for

any adversarial Bayes classifier A,

∫
1{η∗<1/2}dP∗

1 ≤
∫
Sϵ(1AC )dP1 ≤

∫
1{η̂∗≤1/2}dP∗

1

Consequently, if P∗(η∗ = 1/2) = 0, then
∫
1{η∗<1/2}dP∗

1 =
∫
Sϵ(1AC )dP1, which implies

that
∫
Sϵ(1AC )dP1 assumes a unique value over all possible adversarial Bayes classifiers.

D.5 Proof of Lemma 99

First, if the loss ϕ is consistent, then 0 can minimize Cϕ(η, ·) only when η = 1/2.

Lemma 179. Let ϕ be a consistent loss. Then if 0 ∈ argminCϕ(η, ·), then η = 1/2.

Proof. Consider a distribution for which η(x) ≡ η is constant. Then by the consistency of

ϕ, if 0 minimizes Cϕ(η, ·), then it also must minimize C(η, ·) and therefore η ≤ 1/2.

However, notice that Cϕ(η, α) = Cϕ(1 − η,−α). Thus if 0 minimizes Cϕ(η, ·) it must

also minimize Cϕ(1 − η, ·). The consistency of ϕ then implies that 1 − η ≤ 1/2 as well and

consequently, η = 1/2.
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The proof of Lemma 99 also uses Lemma 175 from Appendix D.1.

Proof of Lemma 99. Notice that Cϕ(η, α) = Cϕ(1 − η,−α) and thus it suffices to consider

η ≥ 1/2 + r.

Lemma 179 implies that Cϕ(1/2 + r, αϕ(1/2 + r)) < ϕ(0). Furthermore, as ϕ(−α) ≥

ϕ(0) ≥ ϕ(α) when α ≥ 0, one can conclude that ϕ(αϕ(1/2 + r)) < ϕ(0). Now pick an

αr ∈ (0, αϕ(1/2 + r)) for which ϕ(αϕ(1/2 + r)) < ϕ(αr) < ϕ(0). Then by Lemma 175,

if η ≥ 1/2 + r, every α less than or equal to αr does not minimize Cϕ(η, α) and thus

Cϕ(η, α)− C∗
ϕ(η) > 0. Now define

kr = inf
η∈[1/2+r,1]
α∈[−∞,αr]

Cϕ(η, α)− C∗
ϕ(η)

The set [1/2+ r, 1]× [−∞, αr] is sequentially compact and the function (η, α) 7→ Cϕ(η, α)−

C∗
ϕ(η) is continuous and strictly positive on this set. Therefore, the infimum above is assumed

for some η, α and consequently kr > 0.

Lastly, ϕ(αr) < ϕ(0) implies αr > 0.

D.6 Proof of Proposition 101

First, we show that replacing the value of αϕ(1/2) with 0 in Theorem 86 results in a minimizer

of Rϵ
ϕ.

Lemma 180. Let αϕ : [0, 1] → R be as in Lemma 85 and define a function α̃ϕ : [0, 1] → R

by

α̃ϕ(η) =


αϕ(η) if η ̸= 1/2

0 otherwise

(D.6)

213



Let η̂ : Rd → [0, 1] be the function described in Theorem 95. If ϕ is consistent and

C∗
ϕ(1/2) = ϕ(0), then α̃(η̂(x)) is a minimizer of Rϵ

ϕ.

See Appendix D.6.1 for a proof of this result. Next, we formally prove that if the adver-

sarial Bayes classifier is not unique up to degeneracy, then the sets {η̂ > 1/2} and {η̂ ≥ 1/2}

are not equivalent up to degeneracy.

This result in Lemma 102 relies on a characterization of equivalence up to degeneracy

from [23].

Theorem 181. Assume that P is absolutely continuous with respect to Lebesgue measure

and let A1 and A2 be two adversarial Bayes classifiers. Then the following are equivalent:

1) The adversarial Bayes classifiers A1 and A2 are equivalent up to degeneracy

2) Either Sϵ(1A1) = Sϵ(1A2)-P0-a.e. or Sϵ(1AC2 ) = Sϵ(1AC1 )-P1-a.e.

Notice that when there is a single equivalence class, the equivalence between Item 1) and

Item 2) is simply the equivalence between Item 1) and Item 2) in Theorem 178. This result

together with Theorem 87 proves Lemma 102:

Proof of Lemma 102. Let A be any adversarial Bayes classifier. If the adversarial Bayes

classifiers {η̂ > 1/2} and {η̂ ≥ 1/2} are equivalent up to degeneracy, then Theorem 87 and

Item 2) of Theorem 181 imply that Sϵ(1A) = Sϵ(1{η̂>1/2}) P0-a.e. Item 2) of Theorem 181

again implies that A and {η̂ > 1/2} must be equivalent up to degeneracy.

Thus, if the adversarial Bayes classifier is not unique up to degeneracy, then there is a set

Ã with {η̂ > 1/2} ⊂ Ã ⊂ {η̂ ≥ 1/2} that is not an adversarial Bayes classifier, and this set

is used to construct the sequence fn in Equation (5.23). Next, we show that fn minimizes

Rϵ
ϕ but not Rϵ.

Proposition 182. Assume that P is absolutely continuous with respect to Lebesgue measure

and that the adversarial Bayes classifier is not unique up to degeneracy. Then there is a
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sequence of R-valued functions that minimize Rϵ
ϕ but Rϵ(fn) is constant in n and not equal

to the adversarial Bayes risk.

Proof. By Lemma 102, there is a set Ã with {η̂ > 1/2} ⊂ Ã ⊂ {η̂ ≥ 1/2} which is not an

adversarial Bayes classifier. For this set Ã, define the sequence fn by Equation (5.23) and

let α̃ϕ be the function in Lemma 180. Lemma 99 implies that α̃ϕ(η) ̸= 0 whenever η ̸= 1/2

and thus {fn > 0} = Ã for all n. We will show that in the limit n → ∞, the function

sequence Sϵ(ϕ ◦ fn) is bounded above by Sϵ(ϕ ◦ α̃ϕ(η̂)) while Sϵ(ϕ ◦ −fn) is bounded above

by Sϵ(ϕ ◦ −α̃ϕ(η̂)). This result will imply that fn is a minimizing sequence of Rϵ
ϕ.

Let S̃ϵ(g) denote the supremum of a function g on an ϵ-ball excluding the set η̂(x) = 1/2:

S̃ϵ(g) =


supx′∈Bϵ(x)

η̂(x′) ̸=1/2

g(x′) if Bϵ(x) ∩ {η̂ ̸= 1/2}C ̸= ∅

−∞ otherwise

With this notation, because α̃ϕ(1/2) = 0, one can express Sϵ(ϕ ◦ α̃ϕ(η̂)), Sϵ(ϕ ◦ −α̃ϕ(η̂)) as

Sϵ(ϕ ◦ α̃ϕ(η̂)) =


max(S̃ϵ(ϕ ◦ αϕ(η̂)), ϕ(0)) x ∈ {η̂ = 1/2}ϵ

Sϵ(ϕ ◦ αϕ(η̂)) x ̸∈ {η̂ = 1/2}ϵ
(D.7)

Sϵ(ϕ ◦ −α̃ϕ(η̂)) =


max(S̃ϵ(ϕ ◦ −αϕ(η̂)), ϕ(0)) x ∈ {η̂ = 1/2}ϵ

Sϵ(ϕ ◦ −αϕ(η̂)) x ̸∈ {η̂ = 1/2}ϵ
(D.8)

and similarly

Sϵ(ϕ ◦ fn) ≤


max(S̃ϵ(ϕ ◦ αϕ(η̂)), ϕ(− 1

n
)) x ∈ {η̂ = 1/2}ϵ

Sϵ(ϕ ◦ αϕ(η̂)) x ̸∈ {η̂ = 1/2}ϵ
(D.9)
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Sϵ(ϕ ◦ −fn) ≤


max(S̃ϵ(ϕ ◦ −αϕ(η̂)), ϕ(− 1

n
)) x ∈ {η̂ = 1/2}ϵ

Sϵ(ϕ ◦ −αϕ(η̂)) x ̸∈ {η̂ = 1/2}ϵ
(D.10)

Therefore, by comparing Equation (D.9) with Equation (D.7) and Equation (D.10) with

Equation (D.8), one can conclude that

lim sup
n→∞

Sϵ(ϕ ◦ fn) ≤ Sϵ(ϕ ◦ α̃ϕ(η̂)) and lim sup
n→∞

Sϵ(ϕ ◦ −fn) ≤ Sϵ(ϕ ◦ −α̃ϕ(η̂)). (D.11)

Furthermore, Equation (D.9) implies that Sϵ(ϕ ◦ fn) ≤ Sϵ(ϕ ◦ αϕ(η̂)) + ϕ(−1) and Equa-

tion (D.10) implies that Sϵ(ϕ ◦ −fn) ≤ Sϵ(ϕ ◦ −αϕ(η̂)) + ϕ(−1). Thus the dominated con-

vergence theorem and Equation (D.11) implies that

lim sup
n→∞

Rϵ
ϕ(fn) ≤ Rϵ

ϕ(α̃ϕ(η̂))

and thus fn minimizes Rϵ
ϕ.

Lastly, it remains to construct an R-valued sequence that minimizes Rϵ
ϕ but not Rϵ. To

construct this sequence, we threshhold a subsequence fnj of fn at an appropriate value

Tj. If g is an R-valued function and g(N) is the function g threshholded at N , then

limN→∞Rϵ
ϕ(g

(N)) = Rϵ
ϕ(g).

Lemma 183. Let g be an R-valued function and let g(N) = min(max(g,−N), N). Then

limN→∞Rϵ
ϕ(g

(N)) = Rϵ
ϕ(g).

See Appendix D.6.2 for a proof. Proposition 101 then follows from this lemma and

Proposition 182:

Proof of Proposition 101. Let fn be the R-valued sequence of functions in Proposition 182,

and let fnj be a subsequence for which Rϵ
ϕ(fnj) − inff R

ϵ
ϕ(f) < 1/j. Next, Lemma 183
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implies that for each j one can pick a threshhold Nj for which |Rϵ
ϕ(fnj)−Rϵ

ϕ(f
(Nj)
nj )| ≤ 1/j.

Consequently, f
(Nj)
nj is an R-valued sequence of functions that minimizes Rϵ

ϕ. However, notice

that {f ≤ 0} = {f (T ) ≤ 0} and {f > 0} = {f (T ) > 0} for any strictly positive threshhold T .

Thus Rϵ(f
(Nj)
nj ) = Rϵ(fnj) and consequently f

(Nj)
nj does not minimize Rϵ.

D.6.1 Proof of Lemma 180

The proof of Lemma 180 follows the same outline as the argument for Proposition 176:

we show that Rϵ
ϕ(α̃ϕ(η̂)) = R̄ϕ(P∗

0,P∗
1) for the measures P∗

0, P∗
1 in Theorem 95, and then

Theorem 94 implies that α̃ϕ(η̂) must minimize Rϵ
ϕ. Similar to the proof of Proposition 176,

swapping the order of the Sϵ operation and α̃ϕ is a key step. To show that this swap is

possible, we first prove that α̃ϕ is monotonic.

Lemma 184. If C∗
ϕ(1/2) = ϕ(0), then the function α̃ϕ : [0, 1] → R defined in Equation (D.6)

is non-decreasing and maps each η to a minimizer of Cϕ(η, ·).

Proof. Lemma 85 implies that α̃ϕ(η) is a minimizer of Cϕ(η, ·) for all η ̸= 1/2 and the

assumption C∗
ϕ(1/2) = ϕ(0) implies that α̃ϕ(1/2) is a minimizer of Cϕ(1/2, ·). Furthermore,

Lemma 85 implies that α̃ϕ is non-decreasing on [0, 1/2) and (1/2, 1]. However, Lemma 99

implies that αϕ(η) < 0 when η ∈ [0, 1/2) and αϕ(η) > 0 when η ∈ (1/2, 1]. Consequently, α̃ϕ

is non-decreasing on all of [0, 1].

This result together with the properties of P∗
0, P∗

1 suffice to prove Lemma 180.

Proof of Lemma 180. Let P∗
0,P∗

1 be the measures of Theorem 95 and set P∗ = P∗
0 + P∗

1,

η∗ = dP∗
1/dP∗. We will prove that Rϵ

ϕ(α̃ϕ(η̂)) = R̄ϕ(P∗
0,P∗

1) and thus Theorem 94 will imply

that α̃ϕ(η̂) minimizes Rϵ
ϕ. Let γ∗0 and γ∗1 be the couplings supported on ∆ϵ between P0, P∗

0

and P1, P∗
1 respectively. Item II) of Theorem 95 and Lemma 184 imply that

Sϵ(ϕ(α̃ϕ(η̂)))(x) = ϕ(α̃ϕ(Iϵ(η̂(x)))) = ϕ(α̃ϕ(η̂(x
′))) γ∗1-a.e.
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and

Sϵ(ϕ(−α̃ϕ(η̂)))(x) = ϕ(−α̃ϕ(Sϵ(η̂(x)))) = ϕ(α̃ϕ(−η̂(x′))) γ∗0-a.e.

(Recall the the notation Iϵ was introduced in Equation (5.11).) Therefore,

Rϵ
ϕ(α̃ϕ(η̂)) =

∫
ϕ(α̃ϕ(η̂(x

′))dγ∗1 +

∫
ϕ(−α̃ϕ(η̂(x′)))dγ∗0

=

∫
ϕ(α̃ϕ(η̂(x

′)))dP∗
1 +

∫
ϕ(−α̃ϕ(η̂(x′)))dP∗

0 =

∫
Cϕ(η

∗, α̃ϕ(η̂))dP∗

Next, Item I) of Theorem 95 implies that η̂(x′) = η∗(x′) and consequently

Rϵ
ϕ(α̃ϕ(η̂)) =

∫
Cϕ(η

∗, α̃ϕ(η̂))dP∗ =

∫
Cϕ(η

∗, α̃ϕ(η
∗))dP∗ =

∫
C∗
ϕ(η

∗)dP∗ = R̄ϕ(P∗
0,P∗

1)

Therefore, the strong duality result in Theorem 94 implies that α̃ϕ(η̂) must minimize Rϵ
ϕ.

D.6.2 Proof of Lemma 183

This argument is taken from the proof of Lemma 8 in [26].

Proof of Lemma 183. Define

σ[a,b](α) =


a if α < a

α if α ∈ [a, b]

b if α > b

Notice that

Sϵ(σ[a,b](h)) = σ[a,b](Sϵ(h))

and

ϕ(σ[a,b](g)) = σ[ϕ(b),ϕ(a)](ϕ(g))
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for any functions g and h. Therefore,

Sϵ(ϕ(g
(N))) = σ[ϕ(N),ϕ(−N)](Sϵ(ϕ ◦ g)) and Sϵ(ϕ ◦ −g(N)) = σ[ϕ(N),ϕ(−N)](Sϵ(ϕ ◦ −g)),

which converge to Sϵ(ϕ◦g) and Sϵ(ϕ◦−g) pointwise and N → ∞. Furthermore, the functions

Sϵ(ϕ ◦ g(N)) and Sϵ(ϕ ◦ −g(N)) are bounded above by

Sϵ(ϕ ◦ g(N)) ≤ Sϵ(ϕ ◦ g) + ϕ(1) and Sϵ(ϕ ◦ −g(N)) ≤ Sϵ(ϕ ◦ −g) + ϕ(1)

for N ≥ 1. As the functions Sϵ(ϕ◦g)+ϕ(1) and Sϵ(ϕ◦−g)+ϕ(1) are integrable with respect

to P1 and P0 respectively, the dominated convergence theorem implies that

lim
n→∞

Rϵ
ϕ(g

(N)) = Rϵ
ϕ(g).
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